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Figure 1: Design Process Overview.We investigated spent coffee grounds—a commonly wasted natural material—as a sustainable
material for 3D printing (A). We experimented with different food-based binders and adjusted material composition to make
the material self-supporting with hand-extrusion (B). We tuned 3D printing parameters for quality and reliability (C). We then
explored how our material could enable sustainable prototyping workflows and creating objects like biodegradable espresso
cups and planter pots (D).

ABSTRACT
The widespread adoption of 3D printers exacerbates existing en-
vironmental challenges as these machines increase energy con-
sumption, waste output, and the use of plastics. Material choice for
3D printing is tightly connected to these challenges, and as such
researchers and designers are exploring sustainable alternatives.
Building on these efforts, this work explores using spent coffee
grounds as a sustainable material for prototyping with 3D printing.
This material, in addition to being compostable and recyclable, can
be easily made and printed at home. We describe the material in
detail, including the process of making it from readily available
ingredients, its material characteristics and its printing parameters.
We then explore how it can support sustainable prototyping prac-
tices as well as HCI applications. In reflecting on our design process,
we discuss challenges and opportunities for the HCI community to
support sustainable prototyping and personal fabrication. We con-
clude with a set of design considerations for others to weigh when
exploring sustainable materials for 3D printing and prototyping.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
Environmental challenges including climate change, pollution, and
waste production have reached global concern. Within the Human-
Computer Interaction (HCI) community, there is a growing inter-
est in addressing these sustainability issues that are associated
with the materials and the energy we use for digital technolo-
gies [17, 28, 67, 74, 77, 98]. Researchers are examining the effects of
digital technology use on energy consumption [36, 130] as well as
introducing strategies to mitigate energy over-use [87, 131]. Others
have investigated reducing waste output by reusing objects—such
as electronics [47, 55] and textiles [135]—and designing them for
decomposition [65, 66, 68, 113].

The sustainability of personal fabrication technologies, partic-
ularly 3D printing, is a pressing issue [10, 31, 57, 124]. As of 2019,
over 2 million 3D printers have been integrated into the homes of
consumers and small businesses [103]. This widespread adoption
has been enabled by open-source movements (e.g., Fab@Home [73]
and RepRap [52]) and cheap kits, costing less than $160 USD1.
Consequently, the adoption of these machines exacerbates three
1Best Cheap/Budget 3D Printers: https://all3dp.com/1/best-cheap-budget-3d-printer-
affordable-under-500-1000/
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environmental challenges: the use of plastic materials (which have
detrimental ecological effects [20, 30]); waste output (e.g., through
discarded prototypes and failed prints [114]); and energy consump-
tion, particularly from heating the build plate and nozzle during
printing [1, 32]. Research has shown that material choice for 3D
printing plays a significant role in countering these environmental
challenges [34]. For instance, though energy consumption is the
largest driver of 3D printing’s environmental impacts, material
choice can significantly reduce the amount of energy used if the
material can be printed without heat [34]. Material choice can fur-
ther reduce environmental impacts if its components are non-toxic,
abundant, renewable, and compostable [31, 34].

Motivated by a need for materials with low environmental im-
pacts in 3D printing, researchers and designers are exploring al-
ternatives that can enable more sustainable practices. However,
proposed materials often only target some environmental impacts
while leaving others unaddressed. For example, thermoplastic bio-
composite filaments (e.g., [21, 35, 62, 129, 136, 137]) typically aim
to reduce waste production but not high energy consumption. In
addition, some proposed materials—despite having lower environ-
mental impacts—introduce new safety concerns or require labora-
tory equipment for production and/or use. For instance, sodium
silicate (used in [33, 34]) is a known hazardous material that neces-
sitates handling considerations [33, 90]. Similarly, thermoplastic
bio-composite filaments (such as those in [136, 137]) require using
a lab-grade parallel twin extrusion system [121] for production.
These materials and their methods are generally less approachable,
and ultimately, unlikely to be adopted by the broader community.

As designers and researchers, it is critical to not only design
sustainable materials but also consider how individuals can utilize
these materials with readily available tools and equipment [115].
Evidently, designing a material that is sustainable and approach-
able for 3D printing is a challenging process, requiring careful
consideration of its material components to ensure printability,
low environmental impacts, and ease of use [31, 50]. Technical de-
scriptions of such materials are typically well-documented (e.g.,
[34, 136]), but their design processes are often not. Yet offering
insight into these design processes could spur innovation in the
space of sustainable personal fabrication.

In this work, we explore designing a sustainable material for 3D
printing with spent coffee grounds—a commonly wasted natural
material [51, 84, 102]. The presented material avoids thermal energy
consumption; accounts for life cycle considerations by being recy-
clable and compostable; and can be easily made and used at home.
We provide a detailed account of our design process (Figure 1),
the material’s use with a 3D printer, its material characteristics,
and how it supports sustainable prototyping workflows and HCI
applications.

In reflecting on our design process, we discuss insights and chal-
lenges in the development and use of sustainable materials for
3D printing and prototyping. We highlight opportunities for HCI
researchers to innovate in sustainable fabrication and promote sus-
tainable prototyping practices. Finally, we conclude with a set of
design considerations for others to weigh when exploring sustain-
able materials for 3D printing and prototyping.

2 RELATEDWORK
This work relates to four areas of research that examine environ-
mental challenges with common 3D printing materials; the envi-
ronmental impacts of 3D printing; sustainable prototyping and
personal fabrication in HCI; and bio-based materials in 3D printing
processes. In this section, we discuss these areas to provide context
for our work.

2.1 Environmental Challenges with Common
3D Printing Materials

Fused Deposition Modeling (FDM) / Fused Filament Fabrication
(FFF) 3D printers are the most commonly used 3D printers [82, 132].
These printers place material down as small beads in lines or curves
to form the layers of an object. Each layer then successively builds
on top of the previous one. The most commonly used materials on
FDM/FFF 3D printers are the thermoplastic polymers acrylonitrile
butadiene styrene (ABS) and polylactic acid (PLA) [82, 132].

ABS is not biodegradable and is produced from petroleum, which
is a non-renewable resource [86]. PLA, on the other hand, is pro-
duced from plant starch and is generally viewed as being biodegrad-
able [101]. However, its biodegradability has some caveats. PLAwill
decompose into carbon dioxide and water within 90 days only if it is
processed in a controlled composting facility containing a specific
microbiome while also consistently being heated at a temperature
of 60 ◦C [101]. Owing to these requirements, very few facilities
accept PLA for composting. Thus, the material almost exclusively
ends up in landfills [110]. Within landfills, PLA can take anywhere
from 100–1000 years to degrade [58].

Processing PLA through traditional recycling streams is also
problematic as it often contaminates other commonly recycled
plastics, such as polyethylene terephthalate (PET, e.g., soda bot-
tles) [63]. Recently, some companies (e.g., Filabot2) have explored
recycling printed PLA objects back into a printable filament. Ob-
jects are ground, melted, and mixed with fresh plastic pellets before
being extruded into a filament. Though promising, this approach is
energy-intensive, requires additional machinery, and is generally
not ideal for individuals at home.

2.2 Environmental Impacts of 3D Printing
Researchers have shown that the ecological impacts of 3D printing
are primarily driven by electricity use [32, 54, 72]. However, ma-
terial choice can greatly influence the amount of electricity used
during a 3D printing process [34]. In general, reducing the use of
plastics (and especially thermoplastics) in 3D printing is ecologi-
cally beneficial. With thermoplastic 3D printing, significant energy
is used to heat up the material for extrusion as well as maintain an
appropriate build plate/volume temperature during printing [34].
Thus, materials that can be printed without heating (i.e., bond
chemically as opposed to thermally) can greatly reduce the envi-
ronmental impacts of 3D printing [31, 34]. These impacts can be
further reduced if the material is non-toxic, abundant, renewable,
and compostable [31]. Moreover, materials that can be produced
from local waste streams (e.g., recycling) can further reduce envi-
ronmental impacts associated with material transport and support

2Filabot Machines: https://www.filabot.com/collections/filabot-core

https://www.filabot.com/collections/filabot-core
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sustainable circular economies [105, 108]. In this work, we focus
on designing a more sustainable material for 3D printing that ac-
counts for these aforementioned aspects. Specifically, our material
is printed without heat; is renewable, non-toxic, and compostable;
and is primarily produced from local waste.

2.3 Sustainable Prototyping and Personal
Fabrication in HCI

Sustainability in prototyping and personal fabrication is a growing
topic of interest amongst HCI researchers and designers. A recent
five-year review of the HCI community has foregrounded the en-
vironmental impacts of the most commonly used materials and
machines (e.g., 3D printers) for physical prototyping [124]. The
review reveals that 3D printed thermoplastic filaments account for
more than 30% of the materials used in all physical prototypes [124].
Owing to their prevalence, HCI researchers have examined ways to
reduce the use of thermoplastics in 3D printing. These efforts range
from printing low-fidelity wireframes of objects [80] to substituting
an object’s componentswith plastic bottles [59, 60] or reusable Lego-
style blocks [81]. Others have explored reusing scrap materials as
infill in 3D printed objects [126] and re-printing on top of previously
printed objects during prototyping iterations [120]. While these
approaches are promising, they still heavily rely on thermoplastic
materials, which use significant energy (see Section 2.2). In addition,
approaches that combine or encapsulate different materials inside of
3D printed plastic, can result in so-called “monstrous hybrids” [76].
These monstrous hybrids make recycling and biodegradation of an
object’s components difficult or impossible. In contrast, our mate-
rial is designed without the use of thermoplastics and instead uses
bio-based components, which naturally biodegrade.

More broadly, research focused on sustainable personal fabrica-
tion has examined approaches to reuse waste as well as consider
the different stages of a material’s life cycle when creating an ob-
ject [67, 123]. HCI researchers have investigated salvaging waste
from makerspaces [26] and compost [12] as a way to support mak-
ing, understand disposal practices, and create opportunities for local
material production. Others have explored design strategies that
leverage a material’s ability to degrade and decompose as a function
of its use [68, 113]. As an extension of these works, researchers have
investigated using bio-based materials—which readily biodegrade—
with digital fabrication processes [67], and to prototype interactive
objects using mycelium [65, 66], biofoams [64], and bioplastics [56].
Our material builds upon these efforts and is also composed of
bio-based components, enabling it to be biodegradable, recyclable,
and compostable at home. However, our use of bio-based materi-
als differs from past work in that it specifically focuses on design
challenges within a 3D printing context.

2.4 Bio-based Materials for 3D Printing
Bio-based materials, which consist of or are derived from living mat-
ter [24], have emerged as possible alternative materials for 3D print-
ing that support environmental sustainability [31] and promote
circular economies [105, 108]. Here we discuss the use of bio-based
materials in thermoplastic composite filaments, FDM/FFF paste
printing processes, and binder jetting processes. We summarize

and compare the different FDM/FFF bio-based materials with our
material in Table 1.

2.4.1 Thermoplastic Bio-Composite Filaments. Researchers in the
Materials Science and Mechanical Engineering communities have
examined the use of biomass resources as filler materials in thermo-
plastic filaments. These fillers include bamboo fiber [129]; spent cof-
fee grounds [21]; hemp fiber [136]; oyster shells [35]; and lignin [62,
137]. As fillers, these materials are used in low percentages (typ-
ically ≤30%) and are usually combined with a thermoplastic like
PLA [15]. Combining them with thermoplastics allows them to
be printed on FDM/FFF 3D printers without any hardware mod-
ifications. However, any combination of biomass resources with
thermoplastic materials still requires significant energy for printing
and increases the consumption of thermoplastics. Furthermore, as
composites, these filaments become more difficult to recycle and
biodegrade. In this work, we avoid the use of thermoplastics. In-
stead, we focus on using materials that are renewable, recyclable,
compostable, and can be printed without the use of thermal energy.

2.4.2 Paste Extrusion of Bio-based Materials. FDM/FFF 3D printing
processes can be modified with syringe-based [91, 116] or pneu-
matic [46] extrusion set-ups to print a variety of viscous materi-
als. Many of these materials do not require thermal energy dur-
ing printing though may require it for pre-/post-processing (e.g.,
firing in a kiln). Materials supported in this set-up include ceram-
ics [116], mica [34], hydrogels (e.g., sodium alginate [91] and kappa-
carrageenan [97]), and food (e.g., chocolate [88], potato starch [88],
and corn flour [18]). Of these materials, ceramics and mica are not
bio-based or compostable. On the other hand, food-based materi-
als like potato starch and some hydrogels (e.g., agar, alginate) are
compostable but are typically structurally weak and not ideal for
functional prototyping [128].

Designers have developed other bio-based and compostable
materials from a mycelium-straw mixture [61] as well as mussel
shells [105, 108]. Mycelium has a strong potential as functional
material (especially in HCI [65, 66]). However, its growth requires
care to avoid potential adverse health effects caused by fungal
spores [11]. This safety aspect makes mycelium not ideal as a print-
ing material for use within a home setting. Mussel shells have also
shown promise as a printing material, but they require significant
thermal energy to convert into a printable powder [105].

Closely related to this work, the open-source community Ma-
teriom [75] offers different recipes for 3D printable bio-based ma-
terials that are made from eggshells [85], olive pomace [7], oyster
shells [38, 134], and mussel shells [104, 105, 107]. Like the SCG ma-
terial presented in this work, these bio-based materials are designed
to encourage sustainability in 3D printing. However, all of these
materials rely on thermal energy for processing. As previously dis-
cussed in Section 2.2, the use of heat in materials for 3D printing is
a primary contributor to its environmental impacts [34] . In con-
trast, our work presents a sustainable material for 3D printing that
avoids thermal energy consumption and accounts for end-of-life
considerations while still being approachable to users at home. We
summarize and compare different FDM/FFF bio-based materials
and our SCG material in Table 1.
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Table 1: Comparison of FDM/FFF 3D Printing materials introduced in prior works (e.g., Materiom [75]) and our spent coffee
ground (SCG) material. Checkmarks (✓) indicate the material supports a given aspect; and bullet points (•) indicate that
PLA-based materials are only compostable in industrial settings and not at home or through residential compost streams. In
contrast to prior works, the SCG material can be made, printed and reused at home; it is both biodegradable and compostable;
and it avoids thermal energy use for material processing and printing.

Approachability End-of-Life Considerations Avoid Thermal Energy Use

Material Make
At Home

Print
At Home Reprintable Biodegradable Compostable

During
Processing

During Printing
for Build Plate

During Printing
for Extrusion

Thermoplastic
Bio-Composites

[21, 35, 62, 129, 136, 137]
✓ • • ≥180°C ≥60°C ≥200°C

Ceramics
[116] ✓ ✓ ≥950°C ✓ ✓

Mica
[33, 34] ✓ ✓ ✓

Mycellium-PLA
[61] • • ≥180°C 60°C ≥180°C

Mycellium-Straw
[61] ✓ ✓ ✓ ✓ ✓

Oyster Shell
[38, 134] ✓ ✓ ✓ ✓ ✓ 200°C (1 hour) ✓ ✓

Mussel Shell
[104–107] ✓ ✓ ✓ ✓ ✓

100°C (30 mins)
180°C (45 mins)
200°C (45 mins)

30°C ✓

Olive Pomace
[7] ✓ ✓ ✓ ✓ Oven-Dried ✓ ✓

Egg Shells
[85] ✓ ✓ ✓ ✓

100°C (5 mins)
100°C (15 mins) ✓ ✓

This Work
(SCG Material) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.4.3 Binder Jetting of Bio-based Materials. As an alternative to
FDM/FFF processes, others have examined printing bio-based ma-
terials in binder jetting 3D printing processes. These processes
fabricate objects by selectively placing a liquid binder over a bed of
powdered material [139]. Researchers and designers have explored
using mussel shells [105], spent coffee grounds [93], cellulose [137],
and sugar [93] as binder jet material. Binders for these materials
include synthetic polymers (e.g., polyvinyl alcohol [137]), alcohols
(e.g., isopropyl alcohol and rice wine [93]), and sugar-water [105].
Despite their ability to use bio-based materials, binder jetting print-
ers are much more expensive and less approachable to consumers
than their FDM/FFF counterparts [96]. The cheapest binder jetting
printers can cost approximately $30,000 USD3, whereas an FDM/FFF
3D printer typically costs around $160 USD1. In addition, objects
produced using binder jetting require significant post-processing
to remove excess powder [82]. In the current work, we focus on
designing a bio-based material for FDM/FFF 3D printers to promote
ease of access and use at home.

32022 Best Binder Jetting 3D Printer - Pros and Cons & Buying Guide - Pick 3D Printer:
https://pick3dprinter.com/binder-jetting-3d-printer/

3 MATERIAL DESIGN
In reviewing prior works as seen in Table 1, proposed sustain-
able materials generally target only some environmental impacts
(e.g., compostability) while leaving others (e.g., high energy con-
sumption) unaddressed. In addition, there is sometimes a trade-off
between lower environmental impacts and approachability for end-
users. Some materials can be more ecologically beneficial when
compared to typical thermoplastics, but require safety precautions
or laboratory methods for production and/or use [33, 61]. Informed
by previous work, we set out to close these gaps with the design of
our material. In this section, we describe our design principles, our
material components, and our process for creating the material.

3.1 Design Considerations
The design of our material was guided by three interrelated consid-
erations: principles of Sustainable Interaction Design [17], material-
focused strategies to reduce the environmental impacts of 3D print-
ing [31, 32, 34, 105, 108], and Stegall’s design for sustainability
philosophy [115].

Sustainable Interaction Design (SID) establishes five principles
that the design of an object, whetherwith physical or digital materials,

https://pick3dprinter.com/binder-jetting-3d-printer/
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Table 2: Proportions and purpose of the different components that are used to prepare our SCG material for 3D printing.

Name Purpose Mass Proportion (g) Source

Spent Coffee Grounds (SCG) Primary Structural Material 50 Local Coffee Shop
Carboxymethyl Cellulose (CMC) Binder & Thickening Agent 8 Modernist Pantry [69]
Xanthan Gum (XG) Stabilizer & Thickening Agent 1.2 Modernist Pantry [70]
Water Carrier & Mixing Fluid 100 Local Tap

should consider from a sustainability perspective [17]. In designing
our material, we focused on the two main SID principles: linking
invention and disposal, and promoting renewal and reuse. The prin-
ciple of linking invention and disposal dictates that the creation of
an object must include a detailed account of how the object and ma-
terials resulting from its use will be discarded. Promoting renewal
and reuse requires the design of an object to consider possibilities
for the renewal and reuse of existing objects or systems [17].

In the design of our material, we linked invention and disposal
by prioritizing components that are renewable, biodegradable, and
compostable. These considerations minimize waste output and
support a circular material life cycle. To promote renewal and reuse,
we sought to recycle a commonly wasted natural material as our
primary material component. Objects made with our material can
also be recycled back into printing material during prototyping
iterations and be composted at home to create a soil fertilizer.

As previously discussed in Section 2, prior work has demon-
strated that avoiding thermal energy use can greatly reduce the
environmental impacts of 3D printing [31, 34]. Moreover, mate-
rials that are non-toxic, abundant, renewable, and compostable
can further reduce these impacts [31]. In support of low environ-
mental impact, we designed our material to be printed without
thermal energy. Moreover, in alignment with principles of SID, all
of our material components are non-toxic, abundant, renewable,
and compostable. These strategies emphasize creating a sustainable
3D printing material from a material’s energy usage and life cycle
perspective. However, widespread sustainability is a process that
requires considerations beyond the material itself. To design for
sustainability, Stegall [115] argues it is enough to not just consider
sustainable products but rather “to envision products, processes,
and services that encourage widespread sustainable behavior”. In
the context of 3D printing and prototyping, Stegall’s argument
alludes that there must be further considerations on how users
can utilize sustainable materials with readily available equipment.
To this end, we prioritized how users could potentially make and
use our sustainable material within a home setting. We focused on
using materials that were non-toxic and food-safe, and capable of
being processed with in-home tools (e.g., a strainer in a kitchen). In
terms of use, we also sought out materials that were capable of be-
ing recycled and composted within a home setting. By emphasizing
these considerations, we aimed to promote the approachability of
our material while simultaneously supporting sustainability goals.

3.2 Material Components
Guided by our design considerations (Section 3.1), our material
consists of four components: spent coffee grounds, carboxymethyl
cellulose, xantham gum, and water as seen in Table 2. First, we

describe each of these components and their purpose. Then we
detail the design process that we used to select these components
for our material.

3.2.1 Spent Coffee Grounds. Coffee is one of the most consumed
beverages in the world. At least 9.6 billion kg of coffee have been
consumed every year since 2016 [84]. During brewing, typically
only 18-22% of coffee mass is extracted as solubles into a bever-
age [16, 71, 112]. The remaining amount (78-82%) is referred to as
spent coffee grounds (SCG). SCG are the primary by-product of
coffee production in both consumer settings (e.g., at home, coffee
shops) and industrial processes (e.g., instant coffee production) [3].
The majority of SCG are disposed of in landfills [51, 102], making
them an ideal candidate for being recycled as a printing material.
Additionally, SCG are a natural material primarily composed of
cellulose, hemi-cellulose, and lignin [8]—components that make
up the cell walls of plants and trees [99]. Thus, they are renewable
and biodegradable. SCG can also be composted and used as a soil
fertilizer [19, 23, 100]. In collaboration with a local coffee shop, we
recycle SCG as the main component of our printing material.

3.2.2 Carboxymethyl Cellulose. Carboxymethyl cellulose (CMC) is
a biodegradable water-soluble polymer derived from cellulose [9].
It is commonly used as a binding, thickening, and stabilizing agent
in food (e.g., ice cream, cheese) and cosmetic products (e.g., lotions,
toothpaste) [13, 39, 45]. CMC is compostable and has been shown
to beneficially increase water retention in soil [79]. In our mate-
rial, CMC primarily serves as a binding agent for SCG. CMC also
increases the viscosity of the material for printing. Our CMC is
purchased from Modernist Pantry [69], an online food ingredients
supplier.

3.2.3 Xanthan Gum. Xanthan gum (XG) is a natural polysaccha-
ride produced via the fermentation of carbohydrates (e.g., glucose)
by the bacteria Xanthomonas campestris [37, 53]. XG is completely
biodegradable within two days [53]. It is water-soluble and is of-
ten used as a stabilizer and thickener in food products (e.g., salad
dressing) and cosmetics (e.g., toothpaste) [53]. In our material, XG
prevents SCG from separating out of the mixture and also increases
the mixture’s viscosity and its degree of shear thinning. Without
XG’s inclusion, we found that our material would not readily flow
during printing. Our XG is purchased from Modernist Pantry [70].

3.2.4 Water. The primary purpose of water in our material is to
combine the SCG, CMC, and XG components for printing. As hydro-
colloids, both CMC and XG dissolve in water and form gel networks
around the granules of the SCG. After printing, the water evapo-
rates and the gel network dries, bonding the SCG together. Once
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dry, our material is composed of 84.46% SCG, 13.51% CMC, and
2.03% XG.

3.3 Process of Choosing Material Components
Printing without thermal energy immediately narrowed our pos-
sible directions for creating a sustainable material. Specifically, it
meant that we had to rely on a room-temperature paste-based ex-
trusion process. Materials used in paste-based processes typically
have at least 3 components: a primary structural material; a binder
that joins pieces of the structural material together; and a fluid for
mixing the two previous components together. In some cases, the
binder and fluid may be one and the same. Other components can
also be added to tune material properties (e.g., viscosity).

For our printing material, we focused on using water as a carrier
fluid as it is a highly approachable and versatile material. For the
structural material and binder, the most direct way to achieve our
design goals was to focus on using bio-based materials. Because
these materials are derived from living matter, they are generally
non-toxic, abundant, renewable, and compostable. Inspired by pre-
vious work that examined reusing oyster shells [134] and mussel
shells [105], we were particularly interested in reusing waste bio-
material from commonly disposed of items.

In our initial explorations, we found that many commonly dis-
posed of bio-based materials, such as paper (e.g., egg-cartons, news-
paper), are already highly recycled for other purposes [29, 125].
Using one of these as our printing material would potentially dilute
existing reuse/recycling streams and may not have as large of a
positive environmental impact. Instead, we opted to focus on a
material that does not have an established stream to maximize en-
vironmental benefits. Food waste, in particular, is one of the largest
contributors to landfills and one of the least reused and recycled
materials [29]. After a discussion with a local coffee shop’s staff,
we discovered that SCG are almost exclusively disposed of in land-
fills [51, 102]. This discussion led us to explore SCG as our primary
structural material.

Mixing SCG with water resulted in a slurry that could be ex-
truded through a syringe but the groundswould not adhere together.
We searched for commonly used and easy-to-acquire food-based
binders as these would be most likely to be bio-based and sup-
port our design goals. Our initial list consisted of wheat flour, rice
flour, kappa carrageenan, XG, CMC, and agar powder. However,
we immediately excluded kappa carrageenan as it required heat to
become a gel. For the remaining binders, we experimented with
mixing different proportions of binder into solutions consisting
of 10 g of spent coffee grounds and 20 g of water. We gradually
increased the proportion of a particular binder until a mixture’s
viscosity was reminiscent of peanut butter. Using a 10 mL syringe4,
we hand-extruded line samples of each mixture (Figure 1B) and
allowed them to dry. Once dried, we tried to pull apart and com-
press the samples until they broke. Some binders, such as XG and
wheat flour, resulted in samples that would crumble upon manipu-
lation, making them unsuitable for use in a 3D printing material.
On the other hand, samples containing CMC were much stronger
compared to the aforementioned binders. This led us to use CMC
as our binder.

410 mL Syringe: https://www.amazon.com/dp/B013WWFJX0/

A B

Figure 2: Determining suitable thixotropy. We found when
the SCG material holds its shape on a stirring rod and does
not drip (A), it is self-supporting and exhibits thixotropic
behavior suitable for hand-extrusion and 3D printing (B).

When applying pressure to a mixture of SCG, CMC, and water
inside a larger syringe (60 mL), we noticed the SCG were prone
to separating out of the mixture. This separation caused clogging
and inconsistent extrusion. To address this challenge, we explored
adding a small amount of XG to the mixture as it prevents simi-
lar separation from occurring in cosmetics (e.g., toothpaste) and
increases thixotropy [78]—a material’s ability to readily flow when
force is applied and then gradually returns to a more thick, sta-
ble state. We further tuned the amount of XG to reach a suitable
thixotropy that would support stacking “layers” of the material for
3D printing (Figure 2B).

4 3D PRINTING APPROACH
This section describes our preparation procedure for our spent
coffee ground-based material (SCG material), our 3D printer set-up,
printing parameters, and our decision process for aspects such as
nozzle diameter and print speed.

4.1 Material Preparation
We partnered with a local coffee shop5 to receive their SCG that
were previously used to make espresso-based drinks (e.g., lattes,
cappuccinos). The obtained grounds were finely ground to approxi-
mately 200 µm in diameter (visually similar in size to table salt) and
initially wet.We opted to dry the SCG in direct sunlight for two days
to avoid energy consumption associated with oven-drying. Once
fully dried, we sifted the grounds using a basic kitchen strainer6 to
remove any large clumps.

After measuring their proper proportions, all of the dry powders
(i.e., SCG, XG, CMC) were combined together in a single jar. The
powders were then shaken together for approximately 1 min to
ensure a uniform mixture. This combination was then slowly mixed
into another jar containing a proportional amount of water by mass.
Once the mixture was homogeneous, the SCG material was loaded
into 60 mL syringes7. Following the exact proportions in Table 2
produces approximately 90 mL of the SCG material. Notably, this
entire procedure can be accomplished in a standard kitchen at home
with food-safe ingredients.

5Arriviste Coffee Bar: https://arriviste.coffee
6OXO 8-inch Strainer: https://www.amazon.com/dp/B00133DRIK/
760 mL Syringe: https://www.amazon.com/dp/B01M1R392V/

https://www.amazon.com/dp/B013WWFJX0/
https://arriviste.coffee
https://www.amazon.com/dp/B00133DRIK/
https://www.amazon.com/dp/B01M1R392V/
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Figure 3: The extrusion set-up and components (A) used to print our SCG material on a modified FDM/FFF 3D printer (B).

4.2 3D Printer Set-Up
We modified a consumer-grade FDM/FFF 3D printer similar in
design to a Prusa I38 to support printing the SCG material as seen
in Figure 3. The SCG material is extruded from a syringe using an
open-source large-volume pump [91]. The slip-end of the syringe is
inserted into one end of PVC plastic tubing (5/32" inner diameter)9.
The other end of the tubing is connected to a barbed luer lock
coupling10. Both the syringe tip and the coupling are secured to
the hose using bolt clamps11. Finally, the luer lock coupling is fitted
with a 14 gauge (1.6 mm inner diameter) dispensing needle tip12. We
experimented using needle tips that have smaller inner diameters
(e.g., 16 and 20 gauge) but found these were more prone to clogging.
The luer lock coupling and needle are mounted onto the x-axis
of the printer using a 3D printed adapter (Figure 3B). We have
open-sourced the designs of the adapter13. Finally, a PTFE sheet14
is affixed to the surface of the printer’s build plate using binder
clips15. This allows printed objects to be relocated for drying so
that the printer can be repeatedly used without delay.

4.3 Printing Parameters
Within our slicing software16, the nozzle diameter is set to 1.6 mm
to match the diameter of the dispensing needle. The layer height is
generally set to 1.0 mm. The SCG material is printed at a speed (i.e.,
feed rate) of 300 mm min−1. We slice 3D models with a solid infill
(100%) and print with retraction disabled to maintain a consistent
flow of the SCG material during printing.

4.3.1 Process of Choosing Printing Parameters. We used a trial-and-
error approach to determine these different parameters. We set the
feed rate by testing different extrusion speeds. Thermoplastics like

8Prusa I3: https://reprap.org/wiki/Prusa_i3
9Tygon PVC Soft Plastic Tubing (5/32"" ID, 9/32" OD): https://www.mcmaster.com/
6516t16
10Plastic Quick-Turn Tube Coupling (5/32" ID Barbed Tube): https://www.mcmaster.
com/51525k274
11Bolt Clamps for Soft Hose (9/32" to 21/64" ID): https://www.mcmaster.com/53175K81/
12Dispensing Tip with Luer Lock Connection (14 Gauge Gauge): https://www.
mcmaster.com/6699A1/
13https://github.com/utilityresearchlab/scg-3d-printing
14PTFE (Teflon) Sheet: https://www.amazon.com/dp/B009AYTYAO/
15Binder Clips: https://www.amazon.com/dp/B07DXSBT5J
16PrusaSlicer: https://www.prusa3d.com/page/prusaslicer_424/

PLA can typically be extruded around 3600 mm/min, while syringe-
based pastes must be extruded more slowly to prevent the syringe
pump’s motor from skipping steps (i.e., jamming). Beginning with
1000 mm/min, we extruded 5 mm worth of the SCG material while
listening for any “clicking” sounds from the syringe pump’s mo-
tor (Figure 3A), which would indicate it was skipping steps. If the
motor skipped steps, we decreased the feed rate by 100 mm/min
and repeated the process until the motor could continuously ex-
trude the SCG material without any issues. Our layer height was
determined by extruding lines of 50 mm at varying layer heights
ranging from 0.4 mm to 1.4 mm). We then examined each line for
consistent extrusion. Though we can successfully print using layer
heights as small as 0.8 mm, we opted to use 1.0 mm, reducing some
feature resolution for faster printing times. In the next section, we
characterize the properties of our SCGmaterial to better understand
how it can support sustainable prototyping.

5 MATERIAL CHARACTERIZATION
We were interested in understanding different aspects of our ma-
terial and how they could support sustainable prototyping. This
section provides a basic characterization of our SCG material con-
sisting of its shrinkage during drying, tensile strength, dissolution
in water, and compostability. For shrinkage, we demonstrate a strat-
egy to mitigate errors in dimensional accuracy when the material
dries. For strength, we compare SCG material to PLA. In our water
dissolution test, we discuss the rate of dissolution and explore how
to prevent dissolution using beeswax. Finally, we provide the results
of a composting study that demonstrates that the SCG material can
be composted at home.

5.1 Shrinkage Characterization and Mitigation
In our preliminary printing tests, we discovered that the SCG ma-
terial was prone to shrinking as an object dried. This behavior is
due to the evaporation of water from XG and CMC. We character-
ized this shrinkage behavior to determine a mitigation strategy. We
printed five rectangular specimens (30 mm x 30 mm x 5.6 mm) with
100% infill. The specimens were left to air-dry for three days. We
then recorded and averaged the length, width and height of each
sample as seen in Figure 4A. The error in length, width, and height

https://reprap.org/wiki/Prusa_i3
https://www.mcmaster.com/6516t16
https://www.mcmaster.com/6516t16
https://www.mcmaster.com/51525k274
https://www.mcmaster.com/51525k274
https://www.mcmaster.com/53175K81/
https://www.mcmaster.com/6699A1/
https://www.mcmaster.com/6699A1/
https://github.com/utilityresearchlab/scg-3d-printing
https://www.amazon.com/dp/B009AYTYAO/
https://www.amazon.com/dp/B07DXSBT5J
https://www.prusa3d.com/page/prusaslicer_424/
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Figure 4: Shrinkage characterization and mitigation for our
SCG material. The average error in dimensional accuracy for
five printed specimens (30 mm x 30 mm x 5.6 mm) once dried is
-14.53% (SD=1.94) (A). After uniformly scaling the geometry
of specimens by 15.0% before printing, the average error in
dimensional accuracy caused by shrinkage for five printed
specimens reduced to -1.05% (SD=0.60).

are -14.61% (SD=2.64); -14.69% (SD=1.71); and -14.29% (SD=3.05),
respectively. The average of these dimensions is -14.53% (SD=1.94).

As a shrinkage mitigation strategy, we examined applying a
uniform scale factor (15%) to object geometry prior to slicing for
printing. We scaled the rectangular geometry that was used for the
characterization and printed five specimens (34.5 mm x 34.5 mm x
6.4 mm) with 100% infill. The specimens were left to completely dry
for three days. We then measured the dimensions of the specimens
and computed the percent error based on their expected values
(30 mm x 30 mm x 5.6 mm) as seen in Figure 4B. The error in length,
width, and height are -1.74% (SD=1.49); -1.95% (SD=1.57); and 0.54%
(SD=1.24), respectively. The average error across all of these di-
mensions was reduced to -1.05% (SD=0.60). These results indicate
a uniform scaling can greatly increase the dimensional accuracy
of solid objects when printed with our SCG material. We use this
strategy to mitigate shrinkage throughout this work.

5.2 Tensile Strength Characterization
We performed a tensile strength test according to ASTM standard
D638-14 [25] using an MTS Exceed E43.504 Universal Testing Ma-
chine with a 5 mm/min crosshead speed (Figure 5). We used a 5 kN
load cell for the PLA condition, and a 250 N load cell for the SCG
material condition. For each condition, we printed five Type-I spec-
imens [25] with 100% infill. We printed the PLA specimens using
Prusament PLA filament [95] on a Prusa I3 MK3S+ [94]. We let the
SCG material specimens completely dry for 48 hours. The results of
the test are shown in Table 3. In the PLA condition (Figure 5A), the
average tensile strength was 44.4 MPa (SD: 1.45). In the SCG mate-
rial condition (Figure 5B), the average tensile strength was 0.62 MPa
(SD: 0.42). Overall, the SCG material is considerably weaker than
PLA, having approximately 1.4% of PLA’s tensile strength. The
SCG material is closer in magnitude to the tensile strength of non-
reinforced concrete (i.e., 1 MPa to 5 MPa [6]). As we demonstrate
in Section 6, this strength is suitable for basic prototyping.

5.3 Water Dissolvability and Prevention
In our initial investigations, we found that briefly exposing a dry
SCG material object to water by pouring or submergence would

A B

Figure 5: Experimental apparatus for the ASTM standard
D638-14 tensile strength test comparing PLA (A) to SCG ma-
terial (B).

Table 3: Tensile strength results for PLA and SCG Material.

Material Average Tensile Strength
(MPa, N=5)

Std. Deviation
(MPa)

PLA 44.4 1.45
SCG Material 0.62 0.42

moisten the surface of the object, but the object as a whole would
maintain a solid shape and quickly air-dry once the water source
was removed. This is largely because SCG is not water-soluble and
makes up the majority of the material. To dissolve, water must
penetrate the surface going between the SCG to dissolve the CMC
and XG within the object. To better understand how susceptible our
SCG material is to being dissolved, we performed a water dissolu-
tion test. We printed five rectangular specimens (25 mm x 25 mm x
5 mm) with 100% infill. The specimens were then left to completely
dry for two days. Figure 6A shows our experimental set-up. To
perform the test, we first recorded the mass (g) of each specimen.
We then placed a beaker containing water (150 mm) and a magnetic
stirrer (380 mm in length) onto a stirrer plate. The stirrer plate was
then placed directly below a metal fixture. We then suspended a
specimen from the top of the fixture using monofilament fishing
line. The specimen was then placed inside the beaker approximately
20 mm from the bottom such that it was completely submerged
in the water. We then set the stirrer rate to 600 RPM and ran the
test for 30 min. After the time elapsed, we removed the specimen
from the water and let it completely dry for two days. We then
recorded the specimen’s mass. Figure 6C and D show the results
of the water dissolution test. Across the five specimens, the av-
erage loss in mass is 0.786 g (SD: 0.0329) and the average rate of
dissolution is 0.0260 g/min (SD: 0.00119). At this rate, each of the
specimens would completely dissolve in approximately 1.5 h when
fully submerged in highly agitated water.

As a strategy to water-proof SCG material objects, we printed
a sixth specimen (Figure 6C6) and coated it in beeswax17, which
is a natural and compostable material. After performing the disso-
lution test, we found no change in mass with this specimen. Thus,
we suggest using this strategy with SCG material objects that are
intended to continuously interact with water (e.g., to hold liquid).

17Organic Beeswax Pellets: https://www.amazon.com/dp/B01LYMZK4V/

https://www.amazon.com/dp/B01LYMZK4V/
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Figure 6: Water dissolution test set-up and results for six SCG material specimens. (A) An SCG material sample is suspended
with monofilament fishing line inside a beaker containing 150 mL of water. (B) The water is agitated at 600 RPM using magnetic
stirrer plate for 30 minutes to progressively dissolve the material. The visual quality and mass (g) of six specimens (five
consisting of only SCG material and a sixth is coated in beeswax) before (C) and after (D) the test are shown.

5.4 Composting Study
Composting is the controlled decomposition of organic matter [22,
27, 122]. This decomposition is achieved by providing a rich en-
vironment for microorganisms to thrive. Both the growth of mi-
croorganisms and increased soil temperature relative to ambient
temperature serve as indicators of the biodegradation of materi-
als [22, 27, 122]. We examined the ability of our SCG material to
decompose through an indoor home composting study. We opted
for home composting (as opposed to industrial composting) to
demonstrate that our material can be readily composted at home
unlike thermoplastics commonly used in 3D printing.

We used a simple aerobic home composting approach [118, 119]
as seen in Figure 7. This approach can process approximately 500 g
of organic waste material (e.g., food scraps) per day that would
otherwise be disposed of in landfills. We mixed coco coir18 and
horticultural ash19 (biochar) in a 2:1 ratio into a cardboard box
(29 cm x 29 cm x 43 cm) until the box was approximately two-thirds
full. When inserting the material, we dug a hole in the center of the
box, placed the material, and covered it up. The box lid was then
closed, covered with a thin towel, and placed on top of wooden
blocks to increase aeration. We also turned (i.e., mixed) the contents
of the box every other day with a garden trowel20 to increase
aeration. The box was stored with an indoor temperature between
20 ◦C to 30 ◦C and away from excessive moisture (i.e., rain).

We set up a Raspberry Pi Zero21 with an ambient temperature-
humidity sensor22 and a waterproof temperature sensor23 to cap-
ture data from our compost box during the study. The ambient
temperature-humidity sensor was mounted onto the lid inside of

18Burpee Natural & Organic GardenCoir: https://www.amazon.com/dp/B078GQPRX4/
19Wakefield Biochar Soil Conditioner: https://www.amazon.com/dp/B077SWSPC4/
20Garden Trowel: https://www.amazon.com/dp/B01N297HU0/
21Raspberry Pi Zero: https://www.adafruit.com/product/3708
22DHT22 Temperature-Humidity Sensor: https://www.adafruit.com/product/385
23High Temp Waterproof DS18B20 Digital Temperature Sensor: https://www.adafruit.
com/product/642

the compost box to provide baseline ambient temperature and hu-
midity readings (Figure 7B). We used the humidity readings to
ensure that our compost materials had optimal moisture content
(40-60%) for promoting microbial growth [27]. The waterproof tem-
perature sensor was placed into soil at the depth of themost recently
inserted material (as seen in Figure 7C) to capture any increase in
temperature resulting from microorganisms breaking the material
down. The sensor readings for soil temperature, ambient temper-
ature, and humidity were recorded at an interval of one minute
throughout the duration of the study.

Across a three-week period, we performed five material inser-
tions with a average SCG material mass of 62.98 g (SD=20.50) per
insertion. The resulting average change in temperature after mate-
rial insertion is shown in Figure 8A. Soil temperature consistently
rose after each material insertion. In some cases, it rose approxi-
mately 10 ◦C higher than ambient temperature. The overall trend
of increased temperature continued for more than 80 hours after a
given material insertion. We also recovered a few small pieces of
SCG material (approximately 10 mm to 15 mm in length). In con-
trast to our SCG material before composting, the pieces were brittle
and showed significant mold growth as seen in Figure 8B. Both the
growth of microorganisms and increased soil temperature relative
to ambient temperature throughout our compost study indicate
that our SCG material can be composted at home.

6 MATERIAL EXPLORATION
This section describes our exploration of SCG material informed
by our characterization of its properties in Section 5. First, we ex-
plore how SCG material supports three sustainable prototyping
workflows (summarized in Figure 9). For each workflow, we demon-
strate an example object made with the material. Second, we show
how SCG material can be used to support two common applica-
tions in HCI. These explorations are meant to demonstrate the
SCG material’s breadth of applicability. Each produced artifact is a

https://www.amazon.com/dp/B078GQPRX4/
https://www.amazon.com/dp/B077SWSPC4/
https://www.amazon.com/dp/B01N297HU0/
https://www.adafruit.com/product/3708
https://www.adafruit.com/product/385
https://www.adafruit.com/product/642
https://www.adafruit.com/product/642
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Figure 7: Composting of SCG Material. Objects made with
our SCG material (A) can be inserted into a compost box
at home (B) with other food scraps (C). Within a few days,
microorganisms like mold grow and begin breaking the ma-
terial down into compost (D).
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Figure 8: Compost Study Results. The average soil (blue) and
average ambient (orange) temperatures for five SCGmaterial
insertions (A). The standard deviation of each temperature
is depicted as the shaded region around each solid line. Soil
temperature consistently rose above ambient temperature,
indicating the material’s decomposition by microorganisms.
Pieces of SCGmaterial recovered after 3 weeks of composting
(B), distinguishable by the color of the coffee grounds (pink
rectangular outline). Mold growth (green circles) indicates
material decomposition.

proof-of-concept illustrating how the SCG material can be used for
sustainable prototyping.

6.1 Sustainable Prototyping Workflows and
Examples

6.1.1 Material Recycling for No-Waste Prototyping. Prototyping
with 3D printing creates physical waste in the form of stale designs
and failed prints. This can amount to over 30% of the plastic material
used in a workshop [114]. In contrast, objects made from SCG
material can be recycled back into printing material using a basic
coffee grinder24 during prototyping sessions (Figure 10).

24Krups Adjustable Burr Grinder (GX500050): https://www.krupsusa.com/
BREAKFAST-APPLIANCES/COFFEE-GRINDERS/Adjustable-Burr-Grinder-
GX500050/p/8000035582
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Figure 9: Overview of three sustainable prototyping work-
flows supported by our material. Printed objects can (1) be
easily recycled at home to form new printing material; (2)
readily biodegrade during their use when placed into soil;
and (3) be composted at home.

As an example of this workflow, we prototyped an ornament
necklace that went through 3 iterations of material reuse. In the
first iteration, we explored the shape and logo of the ornament,
producing a hexagonal object with two initials of one of the authors
in the center. In the second iteration, we reused the material from
the first prototype and other objects (Figure 10A) to re-make the
ornament with a circular shape, an infinity symbol in the center,
and a hoop region for tying a necklace. However, due to a gap
in extrusion caused by an air bubble in our syringe (Figure 10E),
the hoop of the second prototype was not printed fully closed. We
recycled this object back into printing material to create the final
prototype shown in Figure 11.

6.1.2 Degradation During Use. Objects made with bio-based mate-
rials can encapsulate their degradation as a design opportunity [26,
68, 113]. We explored how degradation can be part of an object’s
intended use. The components of our SCG material are all naturally
biodegradable and have been shown to have positive effects in soil
including increasing water retention [5, 14, 79] and promoting plant
growth [19, 23, 40, 79, 100]. With these considerations in mind, our
SCG material enables creating objects that are designed to benefi-
cially decompose in soil over time. We created two custom-shaped

 https://www.krupsusa.com/BREAKFAST-APPLIANCES/COFFEE-GRINDERS/Adjustable-Burr-Grinder-GX500050/p/8000035582
 https://www.krupsusa.com/BREAKFAST-APPLIANCES/COFFEE-GRINDERS/Adjustable-Burr-Grinder-GX500050/p/8000035582
 https://www.krupsusa.com/BREAKFAST-APPLIANCES/COFFEE-GRINDERS/Adjustable-Burr-Grinder-GX500050/p/8000035582
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Figure 10: Material Recycling Workflow. Objects printed with our SCG material such as prototypes and failed prints (A) can
be ground up using a basic coffee grinder at home (B). The resulting granules (C), once weighed, can then be mixed with a
proportional amount of water (D) to produce our SCG material again for printing (E). This recycling approach is useful in
minimizing waste when a printing error unexpectedly occurs such as a gap in extrusion (green circle).

A B

Figure 11: An ornament necklace (59 mm x 50 mm x 8 mm)
that was prototyped and re-printed three times with our SCG
material (A). The ornament has a printed hoop for attaching
a necklace and features the infinity symbol at its center (B).

A B

C

Figure 12: Planter pots printed with our SCG material and
their flowering plants (A). The first pot (52 mm x 60 mm x
36 mm) has a hexagonal-shape (B). The second pot (48 mm x
49 mm x 40 mm) is cylindrical with a ribbed pattern (C).

planter pots to demonstrate this workflow (Figure 12). These pots
serve as an initial home for small plants. Once the plants have
sufficiently matured, they can be buried with their pots into soil to
continue supporting their growth. In our case, we watered plants
in these pots every other day for two weeks. Throughout the two
weeks, the pots did not mold and maintained their overall form,
only exhibiting slight cracking at their base.

6.1.3 Degradation After Use. Our SCG material enables objects to
be readily biodegradable and compostable after their intended use,
avoiding disposal in landfills entirely (as seen in Figure 7). To demon-
strate this workflow, we created two custom-shaped single-use
espresso cups (Figure 13). Inspired by Cradle-to-Cradle design [76],

A B

Figure 13: Compostable espresso cups made from SCG ma-
terial (A). The left cup is 57.8 mm x 57.8 mm x 55 mm and the
right cup is 57.8 mm x 57.8 mm x 49 mm. The cups hold liquid
once beeswax is applied either on the inside of the cup (B,
left) or around the cup entirely (B, right).

the grounds of previously created espresso drinks serve as vessels
for subsequent drinks. We coated the inside of these cups with
beeswax to waterproof the cups during their use (as discussed in
Section 5.3). Prior work [117, 133] has shown that a natural wax
coating can slow biodegradation of an object (e.g., in soil). However,
beeswax wax itself will biodegrade within 2 weeks [117]. Thus,
beeswax does not compromise the overall biodegradability or com-
postability of SCG material objects (e.g., the espresso cups). Once a
cup serves its purpose, it can be disposed of in a compost bin.

6.2 Exploring Applications in HCI
Alongside prototyping workflows, we explored how our SCG mate-
rial could support sustainable prototyping in two common HCI
applications: capacitive sensing [43] and shape-changing inter-
faces [92].

6.2.1 Biodegradable Capacitive Touch Sensors. Our SCG material
is not conductive on its own. However, when combined with a
biodegradable conductor (e.g., activated charcoal powder from co-
conut shells), the resulting mixture can be used to create capacitive
sensors. We examined two ways to make capacitive sensors with
our SCG material. Our first approach consisted of post-processing
printed objects with a surface coating. After an object dried, we
dipped a portion of the object into water and then applied char-
coal powder25 to the wet region. We used this approach to convert
a hollow cube into a capacitive touch sensor (Figure 14A). As a
second approach, we mixed charcoal power directly into our SCG
25Activated Charcoal Powder: https://www.amazon.com/dp/B077C7CCTK/

https://www.amazon.com/dp/B077C7CCTK/
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Figure 14: Two capacitive sensors made from the SCG mate-
rial and activated charcoal powder: a hollow cube (A), and a
cast triangle (B). The conductivity in the material provides
touch-sensing capabilities as a finger touches the surface of
an object (B,C).

during our material preparation phase (Figure 14B). We used the
same ratio of the materials as listed in Table 2 and added 2 g of
activated charcoal charcoal. This mixture can then be printed or
cast into different shapes to create capacitive sensors.

We tested our capacitive touch sensors by connecting a wire to
the charcoal-coated region of their surface. The other end of the
wire was connected to a 3 MΩ resistor and an Arduino Uno micro-
controller26. Using the Capacitive Sensor Library27, we were able
to sense basic interactions like proximity and a touch gesture (Fig-
ure 14C-D). These sensors could be used for prototyping interactive
artifacts that can readily biodegrade after their use.

6.2.2 Shape-Changing Interfaces. The HCI community has been
increasingly interested in materials that can change their shape to
convey information and support interactivity [4, 44, 92, 97, 127].
Throughout our material exploration, we observed that objects
printed with SCG material could morph out-of-plane into different
shapes as a result of shrinkage while drying (see more information
in Section 5.1) (Figure 15). For example, when we printed a single-
layer square, it morphed into a saddle. Similarly, a rectangular
rod bent upwards while drying. Both of these objects suggest that
further control over the shrinkage behavior of our SCG material
could be used to create biodegradable shape-changing interfaces.

7 DISCUSSION
In this work, we sought to address gaps in sustainability and access
considerations with previously proposed sustainable materials for
3D printing. In particular, we designed a material that avoided using
thermal energy for processing and printing; and ensured that our
material could be made, printed, recycled, and composted at home.
At the same time, we codified our approach and experimentation
26Arduino Uno: https://store.arduino.cc/products/arduino-uno-rev3
27Capacitive Sensor Library: https://github.com/PaulStoffregen/CapacitiveSensor

Figure 15: Two objects printed with our SCG material that
changed their shape as they dried: a flat square morphed
into a saddle shape, and a rectangular rod bent upwards as a
result of shrinkage during drying.

activities to provide insights into a process that is difficult and
typically not documented.

In this section, we reflect on our material, design process, and
explorations to offer insights, challenges, and opportunities when
pursuing sustainable materials and personal fabrication within HCI.

7.1 Reflection on Design Considerations
The design of our material was driven by two principles of Sus-
tainable Interaction Design—linking invention and disposal and
promoting renewal and reuse [17]. Alongside these principles, we
also aimed to support more holistic and sustainable behavior within
the context of 3D printing by following Stegall’s design philosophy
for sustainability [115]. Though these considerations ultimately pro-
vided useful guidance in creating a sustainable 3D printing material
suitable for prototyping, our focus on these principles introduced
challenges and constraints with our material’s general use.

7.1.1 Revisiting SID. In our design process, we sought to link inven-
tion and disposal and promote renewal and reuse through the use
of bio-based materials. Bio-based materials were ideal candidates
for supporting these sustainability goals because these materials
are inherently renewable, biodegradable, and compostable. How-
ever, at the same time, these materials can exhibit less controllable
behavior in a 3D printing context when compared to engineered
thermoplastics.

Engineered thermoplastics—like 3D printing filaments—are ma-
terials designed to have highly controllable behavior and proper-
ties [48]. Consequently, an end-user working with thermoplastics
in 3D printing has more control over details (e.g., surface design)
and can more readily anticipate how their object will appear once
fabricated. In contrast, we found that we were not able to achieve
the same level of quality with our SCG material. We often observed
slight defects in the surface details of objects that we printed with
SCG material. For example, the espresso cups had variations in
layering (apparent in Figure 13A). While these imperfections had
no impact on the overall function of the objects, they do indicate
a decreased level of material control. Along similar lines, material
shrinkage during the drying process (which we discuss more in Sec-
tion 7.2.1) can potentially affect the outcome of an object. These
occurrences can induce frustration for individuals hoping to use
such a material over less sustainable alternatives.

We chose to focus on the two main principles of SID as its other
principles are in support of promoting renewal and reuse over

https://store.arduino.cc/products/arduino-uno-rev3
https://github.com/PaulStoffregen/CapacitiveSensor
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Table 4: Various applications in HCI rely on the material properties of different thermoplastic 3D printing filaments, many of
which have no sustainable alternatives currently available as indicated by a dash symbol (–) above. This presents an opportunity
for HCI researchers and designers to develop and explore new sustainable materials to support these applications.

Applications in HCI Material Properties [2, 92, 111] Thermoplastic Filament Examples [2, 111] Examples of Sustainable Alternatives

Low-Fidelity Prototyping [80, 81] Rigid PLA, ABS, PETG SCG Material, Oyster Shell [38, 134], Egg Shell [85]
Compliant Mechanisms [41, 49] Flexible TPU/TPE, Nylon –
Time-Dependent Mechanisms [83] Soluble PVA –
Touch Sensors [109] Conductive Conductive PLA SCG Material + Charcoal
Haptic Input Devices [138] Magnetic Iron-PLA –
Shape-Changing Interfaces [4, 127] Shape-Change PLA SCG Material

invention and disposal [17]. However, we also considered how our
design process might have changed if we incorporated another
principle from SID: promoting quality and equality. This principle
is described as a second-order design requirement of SID and can
be considered a natural extension of our work. The principle of pro-
moting quality and equality focuses on how to better motivate the
longevity of the use of materials—as seen in the case of preserving
family heirlooms [17]. However, this notion of the longevity of use
falls into direct conflict with bio-based materials as these materials
are inherently meant to biodegrade over time. We reflect that often
SID principles can be in conflict with each other when we try to
apply these principles at face value to all design contexts.

With every object, including ones that are 3D printed, it is critical
to consider the object’s intended use. For example, if we examine
plastic containers often used for fruits like berries, their intended
purpose is to be a vessel for transportation before the fruits are
consumed. Yet, these plastic containers will long outlive the fruits
themselves from a life cycle perspective. In such cases, a sustainable
material like our SCG material could be more appropriate as a
temporary container. Conversely, when the use of an object calls
for longevity, it would make the most sense to create it from (ideally
sustainable) materials that could last for generations. For instance,
if we intended to preserve our ornament necklace as an heirloom,
we should consider using a strong material like aluminum—which
can be endlessly recycled [42]—rather than our SCG material. With
a clear understanding of an object’s use, we can better design it to
support sustainability.

7.1.2 Revisiting Stegall’s Design for Sustainability. According to Ste-
gall [115], designing for sustainability requires a holistic approach
that considers both a design product in addition to processes and
services that can encourage widespread sustainability. Within the
context of 3D printing and prototyping, we focused on how an
individual could produce, use, recycle, and compost their material
at home in a safe and sustainable manner. As such, in our design
process, we prioritized the use of material components that are
bio-based, non-toxic, and kitchen-friendly. We also relied only on
common kitchen tools (i.e., a strainer, jars, and a coffee grinder) to
process, mix, and recycle our material.

In reflecting on our material, there are other aspects that one can
consider in regard to how approachable a material is. For example,
the amount of time it takes amaterial to dry or solidify after printing
can affect how easy the material is to use. Similarly, a material that
shrinks in undefined ways as it dries can be a source of frustration.
Both of these were challenges that we faced with our SCG material.

However, we were able to mitigate shrinkage to a large extent by
scaling objects prior to printing. Importantly, a source of frustration
tied to sustainable materials could influence an end-user to opt for
a less sustainable alternative. Future work is necessary to explore
designing sustainable materials such that they can be on par with
typical thermoplastics as well as to study the human factors related
to using sustainable materials. This work should include studying
individuals using sustainable materials to uncover challenges with
their use and where flexibility might exist to design around people’s
expectations of these materials. In addition, because sustainable
materials for 3D printing and prototyping are an emerging area
of research and not as well-explored as traditional ones, there are
likely to be unexpected obstacles that arise with their use. As such,
documenting these challenges, as we have in this work, is crucial
to support others in exploring this area and pushing toward the
development of more approachable materials.

7.2 Trade-offs, Opportunities, and Insights with
Sustainable Materials

In this work, we also sought to understand how a sustainable mate-
rial might be integrated into prototyping workflows. Currently, the
HCI community relies heavily on 3D printing for prototyping. A
review of prototyping in the CHI community found that thermo-
plastic filaments (e.g., PLA, ABS, etc.) account for more than 30% of
materials used in all prototypes [124]. Sustainable alternatives like
our SCG material can support workflows like designing for degra-
dation and material reuse. However, these materials can introduce
challenges and come with functional trade-offs.

7.2.1 Comparing SCG Material to Thermoplastics. When prototyp-
ing with thermoplastic filaments, objects solidify rapidly as the
plastic cools to room temperature. There is hardly any material
shrinkage. Objects can be printed with overhanging parts (typi-
cally with a slope ≤45° relative to a previous layer of material). In
addition, these objects tend to be very strong [111]. In contrast,
objects made with SCG material take much longer to dry (e.g., a
day); need to be printed on a relocatable substrate (e.g., a PTFE
sheet) to avoid occupying the build plate; and tend to shrink as they
dry. Large overhanging parts are difficult to print as previously
printed layers are less supportive while not fully dry. Furthermore,
objects made with SCG material are much more brittle and weak
than their thermoplastic alternatives. With this in mind, the SCG
material is not suitable for very strong loads (as evidenced by our
strength characterization).
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Table 5: Considerations when designing a sustainable material for 3D printing and prototyping.

Stage Considerations Purpose

Material
Design

- Prioritize the use of bio-based/organic material components as they
are generally non-toxic, renewable, biodegradable, and compostable

- This accounts for life-cycle considerations and link
the material’s invention and disposal

- Prioritize the use of waste material components that are readily available - To promote renewal and reuse by extending the life
of existing materials that are also approachable

- Prioritize material components that do not have an established
reuse/recycling stream

- To maximize environmental benefits and avoid diluting
existing reuse/recycling streams

- Avoid material components that rely on thermal energy for processing
or printing

- To minimize the largest negative environmental impacts
associated with 3D printing

- Consider commonly used food-based materials (e.g., xanthan gum, agar, flour)
as binders

- These are typically bio-based and support approachability
of the material (e.g., can be made and used at home)

- Consider using water as a carrier fluid - Support approachability

Material
Printability

- Use Peanut Butter Test for Viscosity: Start with a large amount of structural material
and gradually increase carrier fluid/binder to reach consistency of peanut butter

- Helps determine when the material mixture has a high
enough viscosity (thickness) for 3D printing

- Use Stirring Rod Test for Thixotrophy: If a material mixture holds its shape on a
stirring rod, it is likely to be self-supporting and thixotrophic

- Helps determine when a material exhibits thixotrophic
behavior suitable for layer stacking in 3D printing

- If the structural material separates from the carrier fluid/binder during hand
extrusion, add a small amount of a stabilizer (like xanthan gum) to the mixture

- Stabilizers prevent mixture separation and increase
thixotrophic behavior

- Extrude lines of the material mixture through a syringe by hand and allow them
to dry; if the dried material crumbles upon handling, choose a different binder

- Ensures the material mixture binds properly and is
not structurally weak

3D Printing
Parameters

- Choose a nozzle with a diameter that produces consistent extrusion; a small diameter
gives higher object fidelity but longer print times

- Ensures printability and emphasizes the trade-off between
resolution and speed

- Choose a layer height that gives consistent extrusion and the needed resolution
for objects; larger layer heights result in shorter print times, but lower object fidelity

- Ensures printability and emphasizes the trade-off between
resolution and speed

- Choose the fastest feed rate that results in consistent extrusion without
jamming the pump motor - Ensures printability and minimizes print time

The amount of available material for printing is another point for
comparison. With our current printer set-up, 60 mL of SCGmaterial
(1 syringe full) is enough to print either 2 flower pots, 4 infinity
necklaces, or 1.5 espresso cups. This volume is approximately the
equivalent of 25 m in length of a 1.75 mm diameter thermoplastic
filament. Given that a 1 kg roll of thermoplastic filament has around
346 m in length of material [89], 1 syringe can only provide about
7% of the material found on a typical filament spool. As a result,
our set-up is not ideal for mid-to-large scale objects much greater
than the size of our example objects. Modifying the printer to use
a valve-based pneumatic extrusion system would enable printing
from a much larger container than a syringe, but would also add
complexity to our printer modifications. Given these considerations,
our SCG material works best for low-fidelity prototyping or when
there is a need to create objects that are specifically designed to
biodegrade.

7.2.2 Opportunities for New Sustainable Materials in HCI. Paste-
based sustainable alternatives for 3D printing generally have similar
limitations to our SCG material. These materials tend to have lower
printing resolution; be more brittle; and be less strong compared
to typical thermoplastic filaments [7, 85, 104, 106, 107]. Moreover,
there is currently a lack of sustainable materials that can replace
the variety of functional capabilities that different thermoplastic
filaments offer for applications in HCI and prototyping as seen
in Table 4. Current alternatives largely focus on replacing rigid ma-
terials like PLA. Beyond the explorations in this work, researchers
have yet to uncover sustainable materials for 3D printing that are
conductive, flexible, or magnetic. To move towards greater sustain-
ability, we need to explore materials with functional properties
beyond rigidity. At the same time, these materials might open new

design opportunities. For example, we highlighted how our mate-
rial could support sensing and exhibited shape-changing behavior
in Section 6.2. Further exploring conductivity and shape-changing
behavior with our material could enable creating impermanent de-
vices that change their shape or sensing functionality as an indicator
of their biodegradation. Such devices could support applications
in HCI that extend to wildlife sensing and agricultural monitoring
(e.g., in [117]) With HCI researchers continuing to develop and
explore new smart and morphing materials [92], we believe there
is a huge opportunity to design a new generation of materials that
are functional, sustainable, support prototyping, and enable the
creation of interactive devices.

7.2.3 Insights into Designing Sustainable Materials. Technical de-
scriptions of sustainable materials are typically well-documented
(e.g., in [34, 136]), but their design processes are often not. For
example, online repositories like Materiom [75] enable individu-
als to explore and share material recipes. However, information
about how and why different material components and printing
parameters are chosen is generally not provided. The process of
designing a material for 3D printing involves a lot of experimen-
tation to find a suitable binder, tune material viscosity/thixotropy,
and optimize various printing parameters. We approached each
of these endeavors methodically and developed strategies to help
simplify the process for others. We codified these considerations
in Table 5. For example, one can use the “peanut butter test” to
determine suitable viscosity for material printability. Through this
work, we aim to lower barriers to innovation and inspire other
HCI researchers and designers to create their own sustainable and
approachable materials.
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8 CONCLUSION
In this work, we introduced a material for 3D printing made from
spent coffee grounds that closes sustainability and approachability
gaps in existing sustainable material offerings. We described our de-
sign process and experimentation activities with the goal of aiding
others in developing their own sustainable materials. We studied
our material’s properties to understand its utility for prototyping
and its ability to be composted at home. We explored how our ma-
terial could support sustainable prototyping workflows as well as
applications in HCI. In reflecting on design process, we presented
insights, challenges, and opportunities in pursuing sustainable pro-
totyping and personal fabrication within HCI. Moving forward,
HCI researchers and designers are uniquely positioned to create
and explore interactive possibilities with such materials and more
broadly enable sustainable material practices in prototyping and
personal fabrication.
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