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Figure 1: High-level overview of our computational design pipeline: (a) Our pipeline begins with an input model and the user

selects different areas on the model’s surface to turn into touchpoints; (b) computes a graph-based path to serially connect the

touchpoints; (c) generates an internal circuit design to embed capacitive sensors inside the object; and (d) fabricates the object

and internal circuit using multi-material 3D printing to be used as a sensing interface with only 1 or 2 wire connections.
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ABSTRACT

Producing interactive 3D printed objects currently requires labo-

rious 3D design and post-instrumentation with off-the-shelf elec-

tronics. Multi-material 3D printing using conductive PLA presents

opportunities to mitigate these challenges. We present a computa-

tional design pipeline that embeds multiple capacitive touchpoints

into any 3D model that has a closed mesh without self-intersection.
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With our pipeline, users define touchpoints on the 3D object’s sur-

face to indicate interactive regions. Our pipeline then automatically

generates a conductive path to connect the touch regions. This path

is optimized to output unique resistor-capacitor delays when each

region is touched, resulting in all regions being able to be sensed

through a double-wire or single-wire connection. We illustrate our

approach’s utility with five computational and sensing performance

evaluations (achieving 93.35% mean accuracy for single-wire) and

six application examples. Our sensing technique supports exist-

ing uses (e.g., prototyping) and highlights the growing promise to

produce interactive devices entirely with 3D printing.

CCS CONCEPTS

• Computing methodologies → Shape modeling; • Applied

computing→ Computer-aided design; • Hardware→ Circuit

optimization; •Human-centered computing→ Interaction

devices.

KEYWORDS

computational design, 3D printing, sensors, capacitive sensing, in-

put devices
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1 INTRODUCTION

Despite recent advances, the overall design and manufacturing pro-

cess to fabricate interactive 3D printed objects is time-consuming

and fragmented. Embedding off-the-shelf electronic components

(e.g., sensors [Wang et al. 2020; Zhu et al. 2020a] or LEDs [He et al.

2022; Savage et al. 2014]) into 3D prints is a popular approach, ad-

hering to the traditional design process that separates form (i.e.,

designing a 3D model) and interactivity into two individual pro-

cesses. However, this approach introduces two challenges. First,

it requires users to design around the electronic components and

their predefined shapes and dimensions. This constraint makes it

difficult to integrate electronics into complex geometries, such as

curved or organic shapes or thin-walled structures with limited

bounding volume (e.g., sword, robotic tactile sensors [Kohlbrenner

et al. 2025]). Second, it requires users to have extensive knowl-

edge spanning electronics, computer-aided design, and fabrication.

Each step is compartmentalized to a dedicated software, such that a

change requires modifying subsequent steps through extensive trial

and error. Our work is motivated by the following question: how
can we effectively streamline the process of manufacturing interactive
3D printed objects?

Multi-material printing can help address these challenges while

presenting new design opportunities. Namely, it can bridge the

two aforementioned processes (i.e., form, interactivity) into one

streamlined process. As one example, we can use conductive fila-

ments to 3D print electronics, such as wires and resistors, directly

into the target object and minimize post-instrumentation. Mini-

mizing instrumentation can enhance durability [Zhu et al. 2020a],

aesthetics [Olberding et al. 2013; Zhu et al. 2020a], and space ef-

ficiency [Dahiya et al. 2009] while simplifying (dis)assembly [He

et al. 2022; Wen et al. 2025] and reducing costs [Rupavatharam et al.

2023]. This bridging can lead toward the broad vision of 3D printing

objects that are fully interactive and ready to be used straight off

the printer.

To this end, our primary contribution is a computational design

pipeline that leverages multi-material printing to embed multiple

capacitive touchpoints into any 3D model that has a closed mesh

without self-intersection (Fig. 1). Our approach focuses on abiding

by the given geometric constraint of a 3D model as opposed to

modifying it. After users select touchpoints and wiring connection

point(s) on the model’s surface, our pipeline employs a graph-based

pathfinding algorithm to serially connect the touchpoints (Fig. 1b)

and then uses the resulting path to generate conductive traces (i.e.,

3D printed resistors) between each pair of touchpoints through

a serpentine trace space-filling algorithm (Fig. 1c). These conduc-

tive traces are optimized to achieve electrical resistance across the

user-defined touchpoints to exploit a phenomenon called resistor-

capacitor (RC) delays. By creating unique RC time delays for all

touchpoints, each touchpoint can be capacitively sensed using only

a single-wire or double-wire connection (Fig. 2).

Achieving interactivity with a single-wire is the extreme case of

minimal instrumentation. Our secondary contribution is a thorough

investigation of how to achieve this extrema and its mathematical

and computational boundaries. This approach enables interactivity

in 3D printed objects for an extensive range of 3D geometry while

even improving overall sensing reliability (cf. Sec. 9.5). Prior works

have also leveraged multi-material 3D printing with conductive

materials to create interactive objects. However, these objects ei-

ther still require significant instrumentation (e.g., 𝑛 wires linked

to a microcontroller to enable 𝑛 touchpoints) [Palma et al. 2024;

Pourjafarian et al. 2019; Schmitz et al. 2015, 2019]. Our work high-

lights how we can fabricate interactive objects irrespective of their

complex geometry with minimal instrumentation.

We demonstrate the scalability, computational performance, ro-

bustness, accuracy, and applicability of our approach with corre-

sponding technical evaluations. For scalability, our approach can

embed 20 touchpoints into a 3D object using a single-wire con-

nection when there is at least 40mm of distance between each

pair of touchpoints. This distance can be further reduced to 12mm

through parameter adjustments. Our sensing evaluation highlights

real-time recognition of 93.35% mean accuracy for the single-wire

connection and 89.49% mean accuracy for the double-wire connec-

tion by testing with 8 different objects. The higher accuracy of the

single-wire connection is further validated by our robustness evalu-

ation. Also, through this robustness evaluation, we further discuss

how to better improve the recognition accuracy for both single-

wire and double-wire connections. Our six applications—Stanford

Bunny, MIDI Drumpads, Hilbert Curve, Chinese Character (Power),

Chinese Lion, and Globe—demonstrate our method’s flexibility in

supporting a range of geometries with varying complexity (Fig. 9).

The source code of our computational design pipeline and supple-

mental materials can be found at https://github.com/d-rep-lab/3dp-

singlewire-sensing. A video demonstration of our sensing tech-

nique can be found in the supplemental materials.

https://doi.org/10.1145/3745778.3766650
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Figure 2: Capacitive sensing for the Stanford Bunny: (a) overall schematic on how the five touchpoints are connected via

conductive traces (colored blue) and connected in series to a microcontroller’s circuit using two wires; (b) the circuit diagram

corresponding to (a) with the representative resistance and capacitance measurements. Each colored dashed wire corresponds to

a case when a point is touched (e.g., orange: tail, green: foot); and (c) the voltage changemeasured at themicrocontroller’s receive

pin when a point is touched. (d–f) correspond to (a–c) but the Stanford Bunny is connected in parallel to a microcontroller’s

circuit using one wire.

2 RELATEDWORK

Our work builds on prior research that demonstrates ways to com-

putationally design and fabricate interactive objects and capacitive

sensors with 3D printing.

2.1 Interactive 3D Prints Using Electronics

Electronic components (e.g., motors, LEDs) offer versatile func-

tionalities and are the backbone of most interactive devices we

encounter. The most popular interactivity mechanism for modern

3D printed objects is embedding or attaching off-the-shelf electronic

components to 3D printed objects [Ballagas et al. 2018]. However,

integrating off-the-shelf electronic components into 3D prints can

be challenging. An individual must design an object around these

components, ensuring that they can be inserted and wired accord-

ingly post-fabrication [Ballagas et al. 2018; Groeger et al. 2016;

Palma et al. 2024; Peng et al. 2015; Savage et al. 2013; Swaminathan

et al. 2020].

Computationally designing the location of electronic compo-

nents can reduce design labor as well as minimize instrumentation.

For example, SurfCuit [Umetani and Schmidt 2017] and MorphSen-

sor [Zhu et al. 2020b] allow makers to computationally preview

component placement (e.g., resistors and integrated circuits) on the

exterior surface of an object and then manually connect them with

conductive tape once the object is 3D printed. DefSense [Bächer

et al. 2016] computationally designs channels so that wires and

sensors can be embedded into a 3D print to enable deformation

sensing. Similarly, ModElec [He et al. 2022] further reduces manual

labor of wiring by generating 3D-printable conductive traces with

A* search algorithm [Hart et al. 1968].

While these approaches help reduce design challenges, their

methods still must account for the external physical electronic

components. This reliance can influence the design of the object

(e.g., prevent a small footprint) and still requires significant wiring

and/or assembly, especially to integrate sensors. In contrast, our

work aims to fabricate electronics as part of the 3D printing process,

contributing to emerging research on 3D printable electronics [Es-

palin et al. 2014; Flowers et al. 2017; Goh et al. 2021; Macdonald

et al. 2014]. In our approach, conductive traces are automatically

generated and 3D printed inside an object to act as resistors. This

approach supports any 3D models that have a closed mesh with-

out self-intersection, reduces the need for manual assembly, and

minimizes the use of additional electronic components.

2.2 3D Printed Capacitive Sensors

Capacitive sensing is a popular technique to capture touch input on

devices by capacitively coupling the human body to a conductive

material (e.g., an electrode or wire). We refer readers to Grosse-

Puppendahl et al. [2017]’s survey highlighting how capacitive sens-

ing has been used in various human-computer interaction (HCI)

contexts. Embedding conductive materials—including conductive

filament—into 3D printed objects can enable capacitive sensing.

These 3D printed objects generally fall under two categories: they
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Figure 3: A computational design pipeline to create a freeform interface with embedded capacitive touchpoints. Rounded

rectangles represent output data or physical objects. Arrows represent different processes. Each image at the bottom is the

corresponding output data (i.e., rounded rectangles) from the computational pipeline.

are either designed with a conductive bottom surface that can

be sensed on touchscreen devices [Schmitz et al. 2021, 2017] or

with conductive regions that can be wired to an external micro-

controller [Bae et al. 2024; Burstyn et al. 2015; Palma et al. 2024;

Schmitz et al. 2015].

Our approach aligns with the second category. Several prior

works [Alalawi et al. 2023; Bae et al. 2024; Burstyn et al. 2015; Ike-

matsu and Siio 2018; Kato et al. 2020; Palma et al. 2024; Schmitz

et al. 2015, 2019; Takada et al. 2016] demonstrate techniques to

generate electrical traces within a 3D model. The resulting 3D

printed objects have multiple touchpoints for sensing once they

are connected to a microcontroller. However, the majority of these

approaches [Burstyn et al. 2015; Ikematsu and Siio 2018; Kato et al.

2020; Palma et al. 2024; Schmitz et al. 2015, 2019; Takada et al.

2016] still require significant instrumentation (e.g., 𝑛 wires con-

nected to a microcontroller to sense 𝑛 touchpoints). In contrast, our

work focuses on minimal instrumentation, requiring only either

a single-wire or double-wire connection(s) (Fig. 2). Our previous

work [Bae et al. 2024] also explored how to reduce instrumentation

but is limited to only network-like geometry (i.e., spheres and cylin-

ders) [Rossignac 2005]. This severe constraint cannot generalize

to arbitrary 3D forms. Our current approach lifts this constraint

by supporting any closed, non-self-intersecting mesh, regardless of

geometric or topological complexity. This capability expands the

design space to fabricate complex geometric models with intrinsic

interactivity, eliminating the need for post-processing. Furthermore,

we deepen the technical foundation of this minimal instrumentation

approach by systematically optimizing the circuit design needed

to enable accurate single-wire sensing of multiple touchpoints (cf.

Sec. 6.3).

3 PRINCIPLE OF CAPACITIVE SENSING WITH

RC DELAY

Our computational design pipeline enables embedding multiple

capacitive touchpoints within a 3D object such that all touchpoints

can be sensed using only a single-wire or double-wire connection

(Fig. 2). We provide a short introduction to capacitive sensing using

RC delay, which is the key principle underlying our approach.

In a capacitive sensing circuit, when a user touches a conductive

element (e.g., electrode), the user’s body and the element become

capacitively coupled [Grosse-Puppendahl et al. 2017]. This coupling

induces an RC delay in the sensing circuit. RC delay is the time

required to charge a capacitor in a circuit through a particular

amount of electrical resistance. Increasing the resistance in a circuit

will generally increase the amount of time needed to charge the

capacitor, thereby creating a larger RC delay. If each conductive

element in a circuit needs a different amount of time to charge

when touched, we can infer what is being touched by measuring

the time needed to reach a predefined voltage threshold (e.g., 2.5V)

on a microcontroller. In our pipeline, the electrical resistance for

each conductive touchpoint is optimized to achieve a different RC

delay by varying the length of the conductive trace between each

pair of touchpoints.

Fig. 2 illustrates this sensing principle with the Stanford Bunny as

our freeform interface. As shown in Fig. 2c, 0 µs indicates the base-

line in which no touchpoints are touched. Touching the bunny’s tail

requires 8 µs to reach the voltage threshold, while its foot requires

28 µs. Using this approach, we can detect multiple capacitive touch-

points by connecting the 3D printed object to a microcontroller

with either two (Fig. 2a–c) or one wire (Fig. 2d–f). A single-wire

connection results in a parallel circuit, while the double-wire con-

nection results in a series circuit. The difference between these

two circuit configurations results in different possible ranges of RC

delays (Fig. 2c vs. Fig. 2f).

4 COMPUTATIONAL DESIGN PIPELINE

OVERVIEW

The main objective of our computational pipeline is to embed mul-

tiple capacitive touchpoints into a freeform model. Our pipeline

can work for any 3D models that have a closed mesh without self-

intersection. To achieve this goal, our computational pipeline (Fig. 3)

is divided into three stages: interface design (Sec. 5), automatic cir-

cuit design (Sec. 6), and fabrication and use (Sec. 7).

Interface Design. In this first stage, the designer prepares a freeform
model by either 3D modeling with a CAD software or uploading

an existing 3D model. Afterward, the designer (1) selects where the
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a

Figure 4: 3D model of the Stanford Bunny with five selected

touchpoints (foot, nose, left ear, right ear, and tail) and two

wiring connection points. The right ear and the two wiring

points are hidden from the viewpoint. The orange meshes

indicate the user’s lassoed selections. The dashed lines in (a)

show where users can download the selected mesh coordi-

nates.

touchpoints will be on the 3D geometry’s surface and (2) chooses

the connection points (i.e., one or two) that will connect the 3D

printed object to a microcontroller (see Fig. 2a,d).

Automatic Circuit Design. After selecting the touchpoints and

wiring connection point(s) on the freeform model, the second stage

uses our computational algorithms to generate the necessary ge-

ometry to route conductive traces throughout the freeform model.

This step consists of two stages. First, our graph-based pathfinding

algorithm computes a path to serially connect all the touch and

wiring points. Next, to produce sufficient resistance between each

touchpoint for the RC delay, our space-filling algorithm draws long,

thin conductive traces within the path.

Fabrication and Use. At the final stage, the designer uses the

fabrication data from the second stage to print the model. The 3D

printed object is connected to a microcontroller with either one or

two wires. After calibrating all touchpoints to sense touches, the

freeform interface is ready for use.

In the following sections, we use the Stanford Bunny with a

double-wire connection (Fig. 2a) to illustrate the computational de-

sign pipeline. The double-wire connection serves as the foundation

to understand how we can implement a single-wire design (Fig. 2d).

5 INTERFACE DESIGN

The designer manually designs a freeformmodel or uses an existing

model, and selects the coordinates of the touchpoints and wiring

connection points on the 3D model’s surface. Our pipeline allows

a designer to use any software of their choice (e.g., Fusion360,

Rhino) to generate the coordinates. We also provide a web-based

user interface (UI) (Fig. 4) to help facilitate this step. To select

the touchpoints and wiring connection points, the web-based UI

requires the following steps.

 

Touchpoint

High conductivity conduit
Low conductivity conduit

Double-wiring
connection points

Intersection point
Rays on 
xy-plane

Conductive �lament

a b c

Figure 5: Automatic circuit design. (a) Our automatic circuit

design first generates a circuit template, which outlines how

we will embed the touchpoints and conductive traces inside a

freeform interface. (b) During circuit embedding, serpentine

trace patterns are generated inside low conductivity conduits

by using a space-filling algorithm. (c) The output is fabrica-

tion data (STL files), which will be used for multi-material

printing.

Upload STL File. The designer uploads the STL file of a freeform

model to the web-based UI. The uploaded file is then rendered as a

3D model for the designer to pan, rotate, and view.

Select Touchpoints and Wiring Connection Points. After view-
ing the model, the designer can freely lasso different areas on the

model’s surface to indicate where the touchpoints and wiring con-

nection points would be placed. Fig. 4 shows an example where the

user has converted the Stanford Bunny’s nose, foot, ears, and tail

as touchpoints.

Export Coordinates. Once the point selection has been finalized,

the designer can export the points’ coordinates (Fig. 4a). The cen-

troids of these coordinates will be used to generate touchpoints

and wiring connection points on the surface of the freeform model.

6 AUTOMATIC CIRCUIT DESIGN

The objective of the automatic circuit design stage is to generate

the appropriate internal circuit design that will be embedded in the

freeform model. This stage is fully automatic and does not require

any active involvement from the interface designer.

The automatic circuit design is broken into two sub-stages. The

first step is to generate a circuit template (Sec. 6.1). A circuit tem-

plate specifies the geometry of points (touchpoints, wiring points)

and conduits (Fig. 5a). This information is used to embed the inter-

nal circuit design into the freeform model in the subsequent step.

Next, in the circuit embedding step (Sec. 6.2), our algorithm uses

the information from the circuit template to draw the conductive

traces for 3D printing using a space-filling algorithm (Fig. 5b,c).

For both substages, we use the following terminology: points
referring to the touchpoints and the wiring connection point(s);

conduits as the generated pipes within the freeform models’ volume.

6.1 Circuit Template Generation

Generating a circuit template requires two sets of information.
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Figure 6: Representations involved in pathfinding: (a) input 3D model for pathfinding; (b) voxel representation of the input

model; (c) voxel representation after trimming voxels close to the model’s surface; (d) graph representation of the trimmed

voxel representation, where a vertex closest to each touchpoint is colored red; (e) a close-up look of the graph representation;

and (f) identified paths using Dijkstra’s pathfinding algorithm. Except for (e), all figures share the same camera position and

angle. For presentation purposes, the voxel and graph representations have lower resolution (i.e., smaller numbers of voxels

and vertices) than implemented.

Preparing Point Geometry. The first step of the circuit template

generation is to prepare the geometry of the points by using the

coordinates of touchpoints and wiring connection points (cf. Sec. 5).

Touchpoints. We ensure that the geometry of touchpoints is

bounded within the freeform model’s volume with two steps. The

first step involves generating a 3D geometry at the centroid of

each touchpoint’s coordinate. We default to a sphere with a 12mm

diameter, but other sizes and types of 3D geometries can also be

considered depending on the designer’s needs. We then volumet-

rically clip the sphere based on its intersection with the freeform

model’s surface.

Wiring Connection Points. For the wiring connection point(s), we

generate a cylinder that intentionally extrudes beyond the model’s

surface (Fig. 5a). A cylindrical design allows external wires (e.g.,

alligator clips) to easily connect to the freeform model at the fab-

rication and use stage. To achieve this cylindrical design, we first

compute both the centroid and normal of a polygon at the specified

coordinates of the wiring connection point(s). We then generate a

cylinder with a 4mm diameter and that is 10mm long. These dimen-

sions are arbitrary and sufficient for an alligator clip to grip onto.

We use the centroid as the cylinder’s center and the normal as the

cylinder’s axis. The cylinder’s height, diameter, and axis direction

can also be manually specified.

Routing Conduits with Pathfinding Algorithm. Next, we generate
conduits (i.e., 3D pipes). The conduits serve two purposes. First, they

will connect the points within the 3D model’s bounding volume.

Second, they will house the 3D printed conductive traces.

We first need to consider how to connect points. Although the

connection of points can be either in series or parallel, we focus only

on a series connection. A series connection is simpler to design for

an RC circuit as well as controlling the RC delay. In addition, based

on our assumption that the freeform model has a closed mesh

without self-intersection, we expect the model to have enough

volume to construct a series connection within the model.

To make a series connection, we need to decide the order of

the points. In the case of the double-wire connection, the first and

last points are the wiring connection points. For the single-wire

connection, the first point corresponds to the wiring connection

point. The designer can manually specify which points are used as

the wiring connection point(s). By default, the remaining points

(i.e., touchpoints) are connected in the selected order during the

interface design stage. For example, the point order for Fig. 5a is the

following: first wiring connection point, tail, foot, right ear, nose,

left ear, and second wiring connection point.

We then route the conduits to connect the points in the specified

order with our graph-based pathfinding algorithm. Our pathfinding

algorithm consists of four steps: (1) voxelize the freeform model,

(2) trim the voxels that are close to the freeform model’s surface, (3)

construct aweighted neighbor graphwith the remaining voxels, and

(4) find the shortest path between each point to connect all points.

These steps are visually summarized in Fig. 6. The shortest path is

used to ensure there is sufficient space to generate other conduits

with the remaining bounding volume. To help distinguish from

the terminology used for the circuit template design (i.e., points,

conduits), we use graph, vertices, and edges as specific terminology

for our pathfinding algorithm.

(1) Voxelize the freeformmodel (Fig. 6b).Voxelization is necessary
to prepare a graph that will route the conduits inside the

freeform model’s bounding volume. We generate a voxel

representation of the model using a specified voxel size. By

default, our pipeline uses 0.5% of the maximum dimension

of any side of the model’s bounding box.

(2) Trim the voxels close to the model surface (Fig. 6c). If a conduit
is placed too close to the model surface, it can introduce

parasitic capacitance (i.e., unintentional capacitance) during

use. Parasitic capacitance is non-ideal as it can influence the

overall sensing capability. Thus, we trim the voxels that are

too close to the model surface (by default, 3mm from the

surface).

(3) Construct a weighted neighbor graph (Fig. 6d,e). We generate

a weighted neighbor graph from the trimmed voxel repre-

sentation. We first compute the distance between each voxel

and then construct a 𝑘-nearest neighbor graph based on

the distances (𝑘 = 10 by default). This process generates

a graph consisting of vertices corresponding to the voxels,

the edges of neighbor relationships, and the edge weights

corresponding to the distances.

(4) Find the shortest paths (Fig. 6f).We can find the shortest path

between a pair of vertices using a pathfinding algorithm such

as Dijkstra’s algorithm or A* [Hart et al. 1968]. By default, we
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employ Dijkstra’s algorithm, but our implementation is flexi-

ble to switch to other pathfinding algorithms. We iteratively

perform this pathfinding step to find the route that connects

all points in series. In parallel, our algorithm aims to avoid

overlapping conduits with each other. Since conduits will

house the conductive traces, an overlap can change the cir-

cuit design. After each iteration, we assign a large penalty

for the edge weights (300 mm) that have already been used

or are too close to the found path. Although the shortest path

is generally preferable to ensure sufficient space, the path

between two points may be too short to generate sufficiently

large resistance in the circuit embedding step (Sec. 6.2). To

resolve such a case, we provide two options. The first option

is to randomly permute the connection order of touchpoints

until all paths become longer than the designer-specified

lengths. The second option is to run our shortest path find-

ing algorithm multiple times. Due to the penalty added in

the edge weights, the algorithm can make a path gradually

longer.

After the route of the conduits is finalized, the conduits are then

rendered as 3D pipes (5mm diameter by default). We chose 5mm

as our default to provide enough space to generate the serpentine

trace patterns with our nozzle’s extrusion width (0.4mm).

6.2 Circuit Embedding

We use the circuit template to generate the freeform model’s inter-

nal circuit design. 3D printing the circuit requires a combination

of conductive and non-conductive materials. As mentioned, points

are the touchpoints and wiring connection points are filled with a

large amount of conductive filament (100% infill) by default. As a

result, points have high conductivity and negligible resistance. In

contrast, the generated conduits can have either high conductivity
or low conductivity (Fig. 5a). The conductivity is determined based

on the conduit’s role in the internal circuit.

Conduits that originate from the wiring connection point(s) have

high conductivity (brown links in Fig. 5a). These conduits are meant

to act as wires (i.e., negligible resistance). Similar to points, the high

conductivity conduits will also be 3D printed with a 100% infill

with a conductive filament. In comparison, the conduits between

each pair of touchpoints have low conductivity (yellow links in

Fig. 5a). The low conductivity conduits act as resistors. To leverage

RC delay for capacitive sensing, these low conductivity conduits

need to achieve high resistance within their limited volume.

We achieve high resistance by drawing a thin, long trace of the

conductive filament using a serpentine trace pattern [Soh et al. 2009]

inside the low conductivity conduits (Fig. 5b). Due to the resistivity

law, a thinner conductive trace will provide lower conductivity

and higher resistance. The thickness of the conductive traces varies

when drawing the trace on the𝑥𝑦-plane versus along the 𝑧-direction.

The thickness for the 𝑥𝑦-plane can be close to the printer’s nozzle

extrusion width (e.g., 0.8mm), while the thickness for 𝑧-direction

should be at least twice the extrusion width (e.g., 1.2mm) to ensure

contact with the previously printed layer. The variance in thickness

is to account for the printing resolution of common FDM printers.

To support a wide range of geometry, our pipeline needs to be

able to handle curved conduits. We designed a space-filling algo-

rithm to draw serpentine trace patterns in these curved conduits.

For a given 𝑧-coordinate along the 𝑥𝑦-plane, we cast multiple rays

that are parallel to each other. Each ray finds the intersection points

with the conduit and creates line segments by connecting the in-

tersection points. By alternatively connecting one line segment’s

endpoint and another line segment’s start point, we can obtain

a serpentine pattern for one layer (Fig. 5b). We repeat this pro-

cess while gradually increasing (or decreasing) the 𝑧-coordinate,

resulting in multiple layers of serpentine patterns. We then connect

these serpentine patterns with a staircase pattern using vertical

lines along the 𝑧-direction. We also need to consider how much

of a margin should be between each ray as well as between each

layer. The margin must be larger than the printer’s nozzle extrusion

width. Based on the specifications of most FDM printers, we use

1.2mm as the margin for both the ray and layer by default.

After generating all circuit components described above, the

internal circuit design is output as STL files for multi-material 3D

printing.

6.3 Supporting Cases Using a Single-Wire

Connection

The serpentine pattern described in Sec. 6.2 aims to achieve high

resistance for the conductive traces in the low conductivity con-

duits. Our analysis reveals that we can support the double-wire

connection as long as each low conductivity conduit has sufficiently

high resistance (Sec. 6.3.1). However, to support a single-wire con-

nection, there are additional requirements: we need to carefully

control the interplay of all resistances in the circuit. This additional

requirement stems from how the single-wire connection results in a

parallel circuit, while the double-wire connection results in a series

circuit (see Fig. 2). To handle the differences in the overall circuit

configuration, we first discuss the theoretical differences between

the double-wire and single-wire connections. We then introduce

an optimization method to support multiple capacitive touchpoints

with a single-wire connection.

6.3.1 Single-Wire vs. Double-Wire Connections.

Double-Wire Connection. When a freeform model is connected to

the microcontroller with two wires like Fig. 2a, we only need to en-

sure each low conductivity conduit has sufficiently large resistance

(e.g., 50kΩ, cf. Sec. 9.1). The large resistance allows a microcon-

troller to have enough buffer to capture the RC delay differences

among the touchpoints. We now discuss in detail the reasoning

behind this simple requirement.

We assume the circuit shown in Fig. 7a, where 𝑅1 is a resistor

connected to a microcontroller and 𝑅2, · · · , 𝑅𝑁 (𝑁 : the number of

touchpoints) are the resistors embedded into the 3D printed object.

The microcontroller has a voltage source with 𝑣in and a resistor

between its voltage source and receive pin. For convenience, we

denote this microcontroller’s resistor as 𝑅𝑁+1. Also, we denote

𝑅𝑖 ’s resistance as 𝑟𝑖 (𝑖 = {1, · · · , 𝑁 + 1}). In addition, the capacitor

formed by touch has capacitance 𝑐 .
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Figure 7: Analysis of a double-wire connection. (a) shows the

circuit schematic for the double-wire connection, where the

𝑝th touchpoint is selected. (b) compares the voltage changes

and time delays induced when 𝑝th and (𝑝 + 1)th touchpoints

are touched.

When touching the 𝑝th touchpoint (1 ≤ 𝑝 ≤ 𝑁 ), the voltage
change measured at the receive pin can be written as:

𝑣𝑝 (𝑡) = 𝑣in

(
1 − exp

(
− 𝑡𝑟

all

𝑐𝑟
till𝑝𝑟after𝑝

))
𝑟𝑁+1𝑟till

2

𝑝𝑟after

2

𝑝

𝑟
all

(∑𝑝

𝑖=0
𝑟𝑖𝑟after𝑝

)
2

(1)

where 𝑡 is the time to charge a capacitor; 𝑟
all

=
∑𝑁+1

𝑗=1
𝑟 𝑗 ; 𝑟till𝑝 =∑𝑝

𝑗=1
𝑟 𝑗 ; and 𝑟

after𝑝 =
∑𝑁+1

𝑗=𝑝+1
𝑟 𝑗 (see Appendix A for the deriva-

tion). To induce a high-impedance state for the receive pin, 𝑟𝑁+1 is

usually very large (e.g., 100MΩ). This value is pre-determined by

the microcontroller’s manufacturer. When 𝑟1, · · · , 𝑟𝑁 are relatively

small (e.g., 100kΩ), we can approximate Eq. 1 as:

𝑣𝑝 (𝑡) ≈ 𝑣in

(
1 − exp

(
− 𝑡

𝑐𝑟
till𝑝

))
(2)

From Eq. 2, we can approximate the time required to reach a

microcontroller’s logic threshold voltage, 𝑣
thres

as followed:

𝑡
thres𝑝 ≈ 𝑐𝑟

till𝑝 ln

(
𝑣in

𝑣in − 𝑣
thres

)
(3)

Fig. 7b summarizes the key theoretical relationships that we de-

rived from the equations above. Using Eq. 3, we can consider that the

RC delay only depends on 𝑟
till𝑝 , the cumulative sum of resistance

values involved from the voltage source to a selected touchpoint.We

further derive that 𝑡
thres𝑝+1

− 𝑡
thres𝑝 = 𝑐𝑟𝑝+1 ln(𝑣in/(𝑣in − 𝑣

thres
)).

This equation indicates that larger resistance for each of 𝑟1, · · · , 𝑟𝑁 ,

results in larger differences between 𝑡
thres𝑝 and 𝑡

thres𝑝+1
. Note:

𝑡
thres1

≤ 𝑡
thres2

≤ · · · ≤ 𝑡
thres𝑁 because 𝑐 ≥ 0, 𝑟𝑝 ≥ 0, and

ln(𝑣in/(𝑣in − 𝑣
thres

)) ≥ 0.

From the observations above, we can support the double-wire

connection by generating a serpentine trace pattern that is as long

as possible within a conduit’s volume (Sec. 6.2). Thus, we only need

to ensure that 𝑡
thres𝑝+1

− 𝑡
thres𝑝 is large enough for a microcon-

troller to measure (e.g., 200 clock cycles of a microcontroller’s CPU).

Note that when 𝑟
till𝑝 is extremely large, 𝑡

thres𝑝 may be too large

to provide reasonable latency for interactivity (e.g., when 𝑡
thres𝑝 >

10ms). However, the possibility of this situation is rare. For exam-

ple, a hypothetical scenario where 𝑡
thres𝑝 > 10ms would require

Figure 8: Analysis of a single-wire connection. (a) shows the

circuit schematic for the single-wire connection where the

𝑝th touchpoint is selected. (b) compares the voltage changes

across different variations of three resistance values (𝑟1, 𝑟2, 𝑟3).

(c) shows theminimumdifferences among 𝑡
thres1

, 𝑡
thres2

, 𝑡
thres3

for the different variations of 𝑟1 and 𝑟 (note: here 𝑟2=𝑟3=𝑟 ). A

white grid cell indicates a violation of the hard constraint of

𝑟1. For (b) and (c), we assume a case using the Arduino UNO

R4 (i.e., 𝑣in = 5V, 𝑣
thres

= 2.5V) and 𝑐 = 100pF.

𝑟
till𝑝 > 140MΩ when using the Arduino UNO R4 as the micro-

controller (𝑣in=5V, 𝑣
thres

=2.5V) and 𝑐 =100pF as a representative

capacitance [ESD Association 2020]. Generating conductive traces

where 𝑟
till𝑝 > 140MΩ inside a freeform model is almost infeasible.

Single-Wire Connection. For the single-wire connection, we con-
nect the freeform model to a microcontroller as shown in Fig. 8a.

This connection makes a branch in the electrical path (i.e., forming

a parallel circuit). Consequently, for the single-wire connection, we

obtain the measured voltage change at the receive pin as:

𝑣𝑝 (𝑡) = 𝑣in

1

𝑟1+𝑟𝑁 +1

(
𝑟𝑁+1 −

𝑟1𝑟
2

𝑁 +1

𝑟1𝑟till𝑝+𝑟𝑁 +1𝑟till𝑝−𝑟 2

1

exp

(
− 𝑡 (𝑟1+𝑟𝑁 +1 )
𝑐 (𝑟1𝑟till𝑝+𝑟𝑁 +1𝑟till𝑝−𝑟 2

1
)

))
(4)

Similar to the double-wire connection, we can approximate Eq. 4

as:

𝑣𝑝 (𝑡) ≈ 𝑣in

(
1 − 𝑟1

𝑟
till𝑝

exp

(
− 𝑡

𝑐𝑟
till𝑝

))
(5)

Then the approximate time required to reach a microcontroller’s

logic threshold voltage is:

𝑡
thres𝑝 ≈ 𝑐𝑟

till𝑝 ln

(
𝑟1

𝑟
till𝑝

𝑣in

𝑣in − 𝑣
thres

)
(6)
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We can observe that the difference between Eq. 5–6 and Eq. 2–3

is the coefficient 𝑟1/𝑟till𝑝 (or 𝑟
till𝑝/𝑟r1

). This coefficient introduces

greater complexity for the single-wire connection compared to

the double-wire connection. The most critical difference from the

double-wire connection is the voltage measured at the receive pin

at 𝑡=0: 𝑣𝑝 (0) = 𝑣in (1 − 𝑟1/𝑟till𝑝 ). This indicates 𝑣𝑝 (0) changes
depending on the relationships between 𝑟1 and 𝑟

till𝑝 (note: 𝑟
till𝑝 =

𝑟1 + · · · + 𝑟𝑝 ). Additionally, the coefficient, 𝑟1/𝑟till𝑝 , influences the

slope of the exponential function in Eq. 5. These facts suggest that

we need to carefully select 𝑟1 and {𝑟2, · · · , 𝑟𝑛} to support the single-
wire connection. This selection requires two considerations.

First, we have a hard constraint for 𝑟1. To sense a selected

touchpoint, we must avoid where 𝑣𝑝 (0) ≥ 𝑣
thres

(i.e., 𝑟1/𝑟till𝑝 ≤
1−𝑣

thres
/𝑣in). For example, Fig. 8-b1 reflects this violation, and a mi-

crocontroller would not be able to detect if a touchpoint has been se-

lected for two of the points (i.e., 𝑝 = 1 and 𝑝 = 2). Thus, to ensure all

touchpoints can be sensed, we must satisfy 𝑟1/𝑟till𝑝 > 1− 𝑣
thres

/𝑣in

for all touchpoints. If using the Arduino UNOR4, 1−𝑣
thres

/𝑣in = 0.5;

thus, the hard constraint corresponds to 𝑟1 > 𝑟2 + · · · + 𝑟𝑁 . This

indicates that 𝑟1 must be greater than the cumulative sum of the

resistance inside the freeform model.

Second, to maximize the difference in 𝑡
thres𝑝 for each touchpoint

(e.g., 𝑝th vs. (𝑝 + 1)th touchpoint), we need to resolve the complex

relationships among 𝑟1 and 𝑟2, · · · , 𝑟𝑁 . Fig. 8b shows four variations

that use different resistance values for the same example. Among

the four variations, Fig. 8-b4 achieves the maximum difference

in 𝑡
thres𝑝 for each touchpoint. To find the configuration with the

largest difference in 𝑡
thres𝑝 for each touchpoint, we introduce a

heuristic resistance optimization for the single-wire connection.

6.3.2 Resistance Optimization. Our heuristic resistance optimiza-

tion for the single-wire connection consists of two steps: (1) identify

the appropriate resistance values and (2) adjust the geometry of the

serpentine trace patterns. This adjustment will take place during

the circuit embedding step described in Sec. 6.2.

Identify Appropriate Resistance Values. The objective of the first
step is to optimize 𝑟1 and 𝑟2, · · · , 𝑟𝑁 . The goal is to maximize the
minimum difference among the time delays. This goal ensures the
time delay difference for each touchpoint is large enough for a mi-

crocontroller to measure. To heuristically achieve this goal, we

perform a grid search utilizing a circuit simulator, specifically,

Lcapy [Hayes 2022]. To make the search space reasonably small,

we consider a case where all resistance values within the freeform

model have the same value, i.e., 𝑟2 = · · · = 𝑟𝑁 = 𝑟 . We then only

have two parameters, 𝑟1 and 𝑟 , to search for a given 𝑁 (i.e., the

number of touchpoints), 𝑣in, and 𝑣thres
. We satisfy 𝑟2 = · · · = 𝑟𝑁 = 𝑟

when adjusting the serpentine trace pattern’s geometry in the sub-

sequent step.

We must first specify the search range and step for each 𝑟1 and

𝑟 . For 𝑟1, we set the search range as [200kΩ, 10MΩ] and the step

increment as 200kΩ by default. These values were chosen in balance

of computational performance and optimization quality. For 𝑟 , we

first identify the highest resistance each conduit can achieve with

the serpentine trace pattern. Among these values, we select the

lowest value as the upper limit for 𝑟 . The step increment is set as

50kΩ. For each grid cell (e.g., 𝑟1 = 1MΩ and 𝑟 = 100kΩ), we use a

circuit simulator to generate 𝑁 circuits, each of which corresponds

to a case where the 𝑝th point is touched (1 ≤ 𝑝 ≤ 𝑁 ). Among the

𝑁 different 𝑡
thres𝑝 values, we select the pair that has the minimum

difference. Each non-white cell in Fig. 8c illustrates this minimum

difference. The optimal result in Fig. 8c is the cell with the largest

𝑟 and smallest 𝑟1 (i.e., 𝑟 = 2500kΩ, 𝑟1 = 4200kΩ). However, when

𝑟1 is near the boundary of the hard constraint, 𝑣𝑝 (0) for the 𝑁 th

touchpoint is also close to 𝑣
thres

(e.g., Fig. 8-b2). Cases when 𝑣𝑁 (0)
is close to 𝑣

thres
are problematic: they can introduce violations

where 𝑟 may be larger than expected. This violation can be further

exacerbated when 3D printing the conductive traces with poor

precision. To account for general fault tolerance in 3D printers, we

select a pair of 𝑟1 and 𝑟 that achieves a close-to-optimal result while

satisfying the condition that 𝑣𝑝 (0) ≤ 0.9𝑣
thres

.

Adjust the Serpentine Trace Patterns. After optimizing 𝑟1 and 𝑟 ,

we apply these values to the circuit design. 𝑟1 is the resistance of

an outside resistor connected to a microcontroller, and thus, it can

be easily adjusted by hand. In contrast, 𝑟 is the resistance value for

each low conductivity conduit, and we can achieve 𝑟 by adjusting

the serpentine trace patterns. As discussed in Sec. 6.2, the circuit

embedding step aims to generate the longest conductive trace (i.e.,

largest resistance) by filling a serpentine trace pattern with a given

small margin (by default, 1.2mm). We can find the serpentine trace

pattern that achieves 𝑟2 = · · · = 𝑟𝑛 = 𝑟 by gradually increasing

both the margin between each ray and the margin between each

layer.

7 FABRICATION AND USE

Multi-Material Printing. After automatically designing the cir-

cuit, the computational pipeline outputs the fabrication data as

four STL files: the original 3D model, the conductive traces, the

touchpoints and wiring connection point(s), and the conduits to

encase the conductive traces. We use all four files for fabrication.

In Appendix B, we discuss in more detail our 3D print settings and

the filaments that we use. See our Github repository
1
for the STL

files of our freeform interfaces.

Wiring and Calibration. After 3D printing, we connect the

printed object to a microcontroller. The schematic differs whether

the freeform interface uses a single-wire or double-wire connection.

Fig. 2a and Fig. 2d represents the schematic diagram for the double-

wire and single-wire connection, respectively. Lastly, using an ex-

isting signal processing library [Bae et al. 2024], we calibrate the

RC delay corresponding to each touchpoint by manually touching

each touchpoint for five seconds and observing the time required

to reach a microcontroller’s logic threshold voltage. Calibration is

necessary as each individual and external factors (e.g., clothing, tem-

perature) may generate a different capacitance [Grosse-Puppendahl

et al. 2017]. A video demonstration of our sensing technique can

be found in the supplemental video.

8 APPLICATIONS

We demonstrate the applicability of our computational design

pipeline with six freeform interfaces with different geometries.

Besides the Stanford Bunny already mentioned, our other freeform

1
https://github.com/d-rep-lab/3dp-singlewire-sensing

https://github.com/d-rep-lab/3dp-singlewire-sensing
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(b) MIDI Drumpad (16)

(a) Stanford Bunny

(c) Hilbert Curve

(d) Chinese Character (Power)

(e) Chinese Lion

(f) Globe

Figure 9: Examples of freeform interfaces with a single-wire connection designed with our computational design pipeline. Each

row shows the 3D printed object, its internal circuit design, and its corresponding RC delay graph. The RC delay graph is made

by touching each touchpoint one after another. The 𝑥-axis corresponds to the time elapsed since using the freeform interface.

The 𝑦-axis corresponds to the number of program loops that elapsed until reaching the microcontroller’s voltage threshold.

The RC delay graph is colored based on each touchpoint’s unique RC delay (e.g., gray: no touch, orange: first touchpoint).
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interfaces include a MIDI Drumpad, a Hilbert Curve, a Chinese

character (power), a museum artifact (Chinese lion), and a globe.

Fig. 9 shows the 3D printed model, its internal circuit, and its respec-

tive RC delay graph with the single-wire connection. These objects

were chosen to demonstrate our pipeline’s ability to handle various

geometries. The MIDI Drumpad is an example of a basic geometry;

Hilbert Curve illustrates geometric curves; Power demonstrates

working with a limited bounding volume; the Stanford Bunny and

Chinese Lion are examples of freeform interfaces. Except for the

Chinese Character (power) and MIDI Drumpad, the remaining four

models were selected from the Thingi10K dataset repository [Zhou

and Jacobson 2016]. See the supplemental materials to see the STL

files for these freeform interfaces. The freeform interfaces represent

different numbers of touchpoints with the required conduit length

discussed in Fig. 10b.

MIDI Drumpad and Hilbert Curve. We envision our technique

can be used to quickly prototype tangible interfaces that require

many touchpoints. As discussed in Sec. 2, one of the limitations

of directly embedding electronics is that it requires iterations of

post-processing. To illustrate this vision, we provide two examples.

Fig. 9c is a Hilbert curve with touchpoints. The Hilbert curve aims to

show how our technique can enable touchpoints even for complex

geometry. In contrast, Fig. 9b is a MIDI trackpad with a box shape.

The trackpad was modeled in a commercial CAD tool. The trackpad

emphasizes how we can enable various touchpoints (i.e., 16 in this

case). Both examples show how users can quickly create different

tangible prototypes while minimizing the use of electronics and

post-processing.

Chinese Character (Power). Research highlights how tangible

artifacts can increase learning engagement while also presenting

the learning materials in a different manner [Schneider et al. 2010].

For example, Fig. 9d shows how the five touchpoints can be used

to learn the sequential stroke order for the Chinese character for

‘power’. The touchpoints are embossed so a user can trace their

finger along the surface of the character to learn how to write the

character.

Cultural Heritage Artifacts. In most museum settings, visitors

cannot directly touch historical artifacts. In these cases, visitors can

only inspect the historical artifacts from afar. 3D printing technol-

ogy can create replicas of cultural artifacts that visitors can engage

with and provide a more interative way to learn [Neumüller et al.

2014]. While visitors may not be able to directly inspect historical

artifacts, the replicas can have different embedded touchpoints that

users can select for further inspection. Fig. 9e shows where a visitor

selects the Chinese lion’s paw for closer details.

Globe. Fig. 9f shows a globe with six touchpoints to help learners
identify the different continents.

9 EVALUATION

The goal of our evaluation is to enable a deeper understanding of

this RC-delay capacitive sensing technique. Thus, our evaluations

focus on the sensing technique rather than the pipeline as a tool.

The theoretical, experimental, and computational investigation pro-

vides the groundwork for this objective, and are highly recognized

methods for technical HCI work [Hudson and Mankoff 2014].

As a step toward this goal, we evaluate the efficacy of our ap-

proach with five technical evaluations and six applications. We

evaluate the practical constraints of our pipeline, specifically the

number of touchpoints that we can fabricate while ensuring each

touchpoint is distinguishable. We perform a computational perfor-

mance evaluation of the algorithms used in the automatic circuit

design stage. We showcase six freeform interfaces made with our

pipeline. We measured the signal-to-noise ratio of this sensing tech-

nique. We conduct a user study to assess real-time recognition accu-

racy. We conducted a computational experiment and mathematical

analysis to evaluate the robustness of the single-wire connection.

9.1 Fabrication Scalability

To determine the scalability of the capacitive touchpoints we can

fabricate, we evaluate what the minimum length of each conduit

(mm) between two touchpoints should be to distinguish each se-

lected point. Determining the minimum length of each conduit

between two touchpoints can infer the smallest possible volume

of a freeform interface. We do not evaluate the maximum size of a

freeform interface as the maximum size is restricted by the build

volume of a given 3D printer.

Double-Wire Connection. We first consider the double-wire con-

nection condition. Based on Sec. 6.3.1, the time difference required

to reach a microcontroller’s logic threshold voltage when touching

𝑝th and (𝑝 + 1)th touchpoint can be written as: 𝑡
thres𝑝+1

− 𝑡
thres𝑝 =

𝑐𝑟𝑝+1 ln(𝑣in/(𝑣in − 𝑣
thres

)). To analyze 𝑡
thres𝑝+1

− 𝑡
thres𝑝 , we place

three assumptions that would represent common use:

• 𝑐 = 100pF, as a representative capacitance for a human body

when selecting a touchpoint [ESD Association 2020].

• 𝑣in = 5V and 𝑣
thres

= 2.5V, following the technical specifica-

tions of the Arduino UNO R4.

• 5µs as the minimum value required for 𝑡
thres𝑝+1

− 𝑡
thres𝑝 ,

which corresponds to 240 clock cycles of the Arduino UNO

R4’s CPU.

From these conditions, we can derive 𝑟𝑝+1 ≥35kΩ.

We need to determine the minimum length of a conduit (3D pipe)

that can house conductive traces with over 35kΩ. To determine such

length, we introduce the following technical assumptions:

• The use of Snapmaker J1S, a 3D printer with a 0.4 mm nozzle

(standard for consumer FDM 3D printers)

• Using a 0 4mm nozzle, the thickness of the conductive trace

for the 𝑥𝑦-plane is set to 0.8mm; the ray and layer margins

are set to 1.2mm (refer to Sec. 6.2).

• Protopasta’s conductive PLA (1 75mm) as the conductive

filament [ProtoPasta 2023].

We measured the resistance of a conductive trace per length

along the 𝑥𝑦-plane and 𝑧-direction using Protopasta’s conductive

PLA. The results are 256Ω/mm for the 𝑥𝑦-plane and 1013Ω/mm

for the 𝑧-direction (Appendix C). We focus only on the conductive

traces on the 𝑥𝑦-plane because our circuit embedding mainly relies

on traces on the 𝑥𝑦-plane (Sec. 6.2). Thus, to achieve 35kΩ, we

need to print approximately 137mm of a conductive trace along the
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(a) Required resistance (b) Required conduit length

Figure 10: Fabrication scalability evaluation of the single- and

double-wire connections with different numbers of touch-

points. In (b), we assume that a conduit has a fixed diameter

of 5mm (our pipeline’s default) or 10mm.

𝑥𝑦-plane. This length can be achieved by drawing the conductive

trace within a conduit that has a 5mm diameter (our pipeline’s

default value for the conduits) and 9mm length. This result infers

the minimum length of a conduit should be 9mm between each pair

of touchpoints.

Note that different technical assumptions can lead to different

results. One significant but easily changeable assumption is the

minimum value required for 𝑡
thres𝑝+1

− 𝑡
thres𝑝 (i.e., 5µs). We con-

sider 5µs to be a relatively safe value corresponding to over 200

clock cycles for the Arduino UNO 4. The value provides enough of a

buffer to account for errors in the conductive trace’s resistance (e.g.,

due to poor 3D printing precision). However, if a user can confirm

one’s 3D printing errors are small (e.g., high-precision printing),

the minimum required time delay difference can be radically re-

duced (e.g., 1µs). This condition significantly reduces the required

horizontal length of a conductive trace for each conduit (e.g., from

137mm to 27mm).

Single-Wire Connection. To understand the fabrication scalability

for the single-wire connection, we place the same assumptions we

listed for the double-wire connection condition. Similar to Sec. 6.3.2,

we apply the constraint of 𝑟2 = · · · = 𝑟𝑛 = 𝑟 and perform a grid

search of 𝑟 and 𝑟1 to find the minimum value of 𝑟 that satisfies

𝑡
thres𝑝+1

− 𝑡
thres𝑝 ≥ 5µs for all 𝑝 . Unlike the double-wire connec-

tion, the required 𝑟 for the single-wire connection varies based

on the number of touchpoints. Fig. 10a summarizes the value of

𝑟 depending on the different number of touchpoints. Following

the same procedure as the double-wire connection, we derive the

minimum length of a conduit with a 5mm diameter, as shown in

Fig. 10b. The derived minimum length for 20 touchpoints is 40mm.

However, as shown with the dashed lines in Fig. 10b, if we increase

the diameter of the conduit to 10mm diameter, this minimum length

of a conduit can be reduced to 12mm. For the single-wire connec-

tion, we can infer that (1) the required length of a conduit between

two touchpoints is longer than the double-wire connection and (2)

the required length follows a close-to-logarithmic function as we

increase the number of touchpoints. Therefore, the single-wire con-

nection places a stronger constraint to fabricate a small freeform

interface with numerous touchpoints.

9.2 Computational Performance

We conducted a performance evaluation of the algorithms used in

the automatic circuit design stage (Sec. 6). We first analyzed the

time complexity of the algorithms to uncover potential performance

bottlenecks when dealing with complex or large 3D objects. We

then ran an experimental evaluation on different 3D models shown

in Table 1. The results revealed the automatic circuit design stages

can be completed between 16s and 240s.

Time Complexity. The computationally demanding steps are

the (1) voxelization of the freeform model (Fig. 6b), (2) Dijkstra’s

pathfinding (Fig. 6f), and (3) circuit embedding (Fig. 5b).

Our voxelization uses the implementation provided by

PyVista [Sullivan and Kaszynski 2019], which checks whether each

position of voxel grids is within an object surface. Thus, the vox-

elization has O(𝑇𝐺) where 𝑇 is the number of triangles construct-

ing a surface and 𝐺 is the number of grid points. Note that 𝐺 is

roughly proportional to the number of the resulting voxels, 𝑉 (i.e.,

O(𝑇𝐺) ≈ O(𝑇𝑉 )). For each pair of touchpoints, Dijkstra’s path-

finding algorithm is performed with the weighted graph of the

trimmed voxel representation (Fig. 6-d). In total, this pathfinding

hasO(𝑁𝑉 log𝑉 ) where𝑁 is the number of touchpoints. The circuit

embedding finds a line segment for each ray on a conduit using the

space-filling algorithm. With 𝑆 triangles on a conduit’s surface, the

line segmentation can be performed with O(𝑆 log 𝑆). When several

rays are generated to slice a conduit (modeled as a 3D pipe) with

a small margin, the circuit embedding for each conduit has a time

complexity of O(𝑈𝑆 log 𝑆) where 𝑈 is the volume of a 3D object.

We apply the serpentine trace pattern only for low conductivity

conduits. In total, the circuit embedding takes O(𝑁𝑈𝑆 log 𝑆). How-
ever, if we model a conduit’s surface with a fixed small number of

triangles, we can simplify the complexity to O(𝑁𝑈 ).
In sum, the automatic circuit design involves O(𝑇𝑉 ) (i.e., vox-

elization), O(𝑁𝑉 log𝑉 ) (i.e., Dijkstra’s), and O(𝑁𝑈 ) (i.e., circuit
embedding) computations. The results highlight that the critical

parameters for computation are𝑈 (volume),𝑇 (the number of trian-

gles),𝑉 (the number of voxels), and 𝑁 (the number of touchpoints).

Experimental Evaluation. We used a MacBook Pro with 2.3 GHz

8-Core Intel Core i9 and 64 GB 2,667 MHz DDR4 (no GPU use).

We collected and modeled eight 3D objects as seen in Table 1. For

each object, we ran the automatic circuit design stage five times

and measured the average completion time. The breakdown and

total completion times are shown in Table 1. The miscellaneous

steps shown in Table 1 include the clipping touchpoints, the con-

version from the trimmed voxel to the graph representation, and

the resistance optimization. As expected from the time complexity

analysis, completion time differs based on the number of triangles,

voxels, touchpoints, and model’s volume. However, for the selected

3D models, the automatic circuit design is completed in less than 4

minutes for all objects.

9.3 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is a quality metric that measures sig-

nal strength versus noise influence. This information can infer the

likelihood of a false touch selection. SNR for capacitive sensing

systems measures how robust the signals produced by the sens-

ing technique (i.e., active signal) are compared to disturbances of

background noise (i.e., inactive signal).

We employed a similar approach to past work [Palma et al. 2024],

where we also computed SNR by repeatedly touching objects with
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the index finger. Three objects (Stanford Bunny, Hilbert Curve, and

MIDI Drumpad 16) were chosen based on the different number of

touchpoints and geometry complexity. We touched all touchpoints

for a given object (refer to Fig. 9 to see touchpoint placements). For

each touchpoint, we adhered to a three-part process that lasted 9

seconds. First, we did not touch for 3 seconds. Then we touched the

designed touchpoint for 3 seconds and lastly let go for 3 seconds.

This process was repeated for 3 trials. During this process, we

measured the raw capacitive values from the Arduino Uno R4. From

these raw values, we used Davidson’s proposed formula [Davison

2010] to compute SNR (Eq. 7). 𝜇𝑈 is the mean value when the

touchpoint is not pressed. 𝜇𝑃 is the mean value the touchpoint is

pressed. 𝜎𝑈 is the standard deviation of values when the touchpoint

is not pressed.

𝑆𝑁𝑅 =
|𝜇𝑈 − 𝜇𝑃 |

𝜎𝑈
(7)

Traditionally, 𝜇𝑈 , 𝜎𝑈 for most capacitive sensing systems (e.g.,

[Palma et al. 2024; Pourjafarian et al. 2019]) represents the inactive

signal (i.e., background noise). These systems cast a binary judg-

ment of whether a touchpoint has been selected or not. However, in

our case, any other touchpoint besides the target touchpoint is also

considered background noise. Our capacitive sensing technique

Table 1: Computational performance evaluation.

Object Information Completion Time (s)

vol (mm
3
) triangles voxels # points voxelize Dijkstra circuit embed misc total

Stanford Bunny

302391 259898 444696 5 60 53 12 28 155

MIDI Drumpad (4)

78284 2116 50176 4

1

3 6 5 16

MIDI Drumpad (9)

241964 7336 155232 9 2 7 15 15 42

MIDI Drumpad (16)

458519 10316 320211 16 5 20 149 44 223

Hilbert Curve

173667 39936 285897 10 12 1 51 49 117

Globe

317412 29472 325651 6 19 23 9 23 74

Chinese Lion

613578 69994 384825 6 23 133 23 22 201

Chinese Character 
(Power)

132102 2256 295056 5 6 156 59 18 240

Table 2: Signal-to-noise ratio for Stanford Bunny, Hilbert

Curve, and MIDI Drumpad (16) under the two wiring condi-

tions: single wire and double wire. 𝑛 represents the number

of touchpoints.

Object & Wiring Condition Trial 1 Trial 2 Trial 3

Stanford Bunny (𝑛 = 5)

Double Wire 49.993 55.179 45.654

Single Wire 369.131 323.638 408.109

Hilbert Curve (𝑛 = 10)

Double Wire 18.779 17.930 17.921

Single Wire 131.987 132.576 124.476

Drumpad 16 (𝑛 = 16)

Double Wire 49.930 44.784 49.263

Single Wire 22.432 22.099 25.876

relies on a categorical judgment of determining which touchpoint

is selected based on the RC Delay. As such, a system can wrongly

judge a touchpoint selection if there is not enough difference in the

RC delays among the touchpoints. Hence, for our SNR calculations,

we computed a pairwise calculation (𝑛 × 𝑛 matrix) between the

target touchpoint (𝜇𝑃 ) and all of the other touchpoints (𝜇𝑈 , 𝜎𝑈 ). We

report the minimum SNR value from this pairwise computation to

illustrate the smallest gap between a pair of touchpoints (Table 2).

See the supplemental material for the full pairwise computations.

Davidson notes that the SNR threshold should at a minimum be 7,

but ideally at least 15 for for robust sensing in real-world applica-

tions [Davison 2010]. Our results highlight how all combinations of

the objects and wiring conditions satisfy this threshold, providing

a high-level of reliability.

9.4 Recognition Accuracy

We evaluate two of the freeform interfaces discussed in Sec. 8. We

conducted a controlled study to measure the real-time recognition

accuracy of the freeform interfaces. The single-wire and double-

wire connections are our independent variables. The accuracy of

recognizing touchpoints is our dependent variable. Based on our

discussion in Sec. 6.3 and insights from Sec. 9.1, we expect the single-

wire connection to be more sensitive if a freeform interface has too

many touchpoints (i.e., unable to distinguish between touchpoints).

To validate this hypothesis, we measure our approach’s real-time

recognition accuracy with 8 different objects.

9.4.1 Objects. Eight objects were selected based on the different

number of touchpoints. The objects were generated from four dif-

ferent models: MIDI Drumpad with 4 keys (PAD_4), MIDI Drumpad

with 9 keys (PAD_9), MIDI Drumpad with 16 keys (PAD_16), and a

Hilbert Curve with 10 touchpoints (HILBERT_10). Each model was

printed twice to represent the single-wire and double-wire connec-

tions. Each touchpoint was labeled with a number to indicate its

touchpoint ID.
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We chose the MIDI Drumpads and Hilbert curve to represent

both simple and complex geometry. The MIDI Drumpad’s over-

all geometry as a box is simple enough that it would be easy for

users to recognize and select the touchpoints. The simplicity in

the geometry also lends well to how the same design can be easily

scaled accordingly to generate different numbers of touchpoints.

However, the design of the MIDI Drumpad limits assessing whether

geometric complexity can also affect real-time recognition accuracy.

As a result, we include a Hilbert curve with 10 touchpoints. We

anticipate the Hilbert Curve is one of the most complex geometries

that fits our modeling criteria.

9.4.2 Protocol. We recruited 10 participants for the study. Each

study session was held in the same location to account for environ-

mental factors. The 3D printed object is connected to an Arduino

UNO 4 microcontroller, which is connected to a laptop. The laptop

was powered by a wall outlet (earth ground). Participants were first

given an overview of our capacitive sensing mechanism, and the

experimenter demonstrated the sensing of touchpoints using the

Stanford Bunny as an example.

After the demonstration, participants began the formal study.

We alternated the order of the two conditions (i.e., single-wire and

double-wire connection) per participant. For each object, the par-

ticipants were given verbal instructions for the calibration process

(Sec. 7). They were instructed on the order of the touchpoints (left

to right; row by row). For the MIDI pads, they held onto each touch-

point for 7s to account for fluctuation and noise. For the Hilbert

Curve, participants were given 3s additional seconds to find the

appropriate touchpoint because of the object’s complex geometry.

After calibration, the performance evaluation started. For each ob-

ject, we randomly generated the order of the touchpoint ID the

participants should touch (i.e., target touchpoint). Three trials were

performed for each touchpoint per object.

9.4.3 Data Collection and Analysis. For each object, we collected

the participant’s calibration and performance data with a signal

processing library [Bae et al. 2024]. The performance data is a time

series with ∼64 samples per second. Each instance has a times-

tamp, the target touchpoint, and the classified touchpoint. For each

touchpoint, we trim the first 3.5 seconds during our analysis to

account for the transition time between touchpoints or look-up

time to find the target touchpoint. This decision is based on our

pilot study where we observed that a participant generally took

about 2–3 seconds for transitions and look-up time. We added one

additional second to provide a safe margin. Within the remaining

time, we set a 70% threshold to determine the dominant touchpoint

classification. The classification can fluctuate between two or more

different touchpoint IDs if the RC delays are not distinct enough.

If there is no dominant value within those remaining seconds, we

consider the result to be not recognized (i.e., no convergence to a

value).

9.4.4 Findings. Overall, our method yields an average accuracy of

91.42% (SE=1.329) across the 8 freeform interfaces. Fig. 11 shows

that 6 out of 8 freeform interfaces achieve real-time accuracy of 90%

or higher. Most objects in the single-wire connection demonstrated

higher accuracy compared to their double-wire connection.

Figure 11: Results from the real-time recognition accuracy.

Bar charts show the average accuracy across 𝑛 = 10 partic-

ipants with a 70% threshold. Error bars represent standard

errors. There is a significant difference between the single-

wire and double-wire connections for PAD_16

.

Figure 12: The RC delay graphs from P5’s calibration and

performance data for PAD_16 with the double-wire connec-

tion. Each graph is colored based on the target touchpoint.

The colored horizontal lines highlight the mean RC delays

measured during the calibration stage (yellow: Point 2, pink:

Point 3, blue: Point 4). In (b), we observe that the RC delay of

each target node is shifted upwards. For example, a horizon-

tal line shows how Point 4 (blue) in the performance data

corresponds to Point 3 (pink), resulting in a misrecognition.

Overall mean accuracies are 93.35% (SE=1.223) for the single-wire

connection and 89.49% (SE=2.339) for the double-wire connection.

However, a Wilcoxon signed-rank test did not show a statistically

significant difference between the two conditions’ accuracies (𝑍 =

1.376, 𝑝 = 0.08445).

The model that had the greatest difference was PAD_16. A

Wilcoxon signed-rank exact test showed there is a significant dif-

ference (𝑝 = 0.03723) in the accuracies between the single-wire and

double-wire connections. Only one participant had an accuracy

of less than 80% with PAD_16 in the single-wire connection. In

contrast, five participants had an accuracy of less than 80% with

the double-wire connection.

A reason for the misrecognition errors is due to participants’

RC delays shifting from the calibration stage to the performance

stage. For example, we examined the collected data from P6 who

scored only 33% accuracy for PAD_16 in the double-wire connection.

Fig. 12 shows how P6’s performance data for all touchpoints has

shifted from their calibration stage. Consequently, most of P6’s
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touchpoint selections were misclassified (e.g., Point 4 in Fig. 12a

was misclassified as Point 3 during the performance stage).

9.5 Robustness to Capacitance Shift

The results in Sec. 9.4 indicate that a shift in capacitance, 𝑐 , can

significantly influence the recognition accuracy. Given how we

observed an overall higher accuracy of the single-wire connection

than double-wire, we hypothesize that the single-wire connection

is more robust to a capacitance shift. To validate this hypothesis,

we conduct a computational experiment perturbing the capacitance

and perform a mathematical analysis.

9.5.1 Computational Experiment. Utilizing a circuit simulator,

Lcapy [Hayes 2022], we compare the robustness of the double-

wire’s and single-wire’s connections to a capacitance shift. The

circuit models correspond to the 8 freeform interfaces evaluated in

Sec. 9.4.

We first resembled the calibration stage (Sec. 7) as follows. With

the circuit models, for each touchpoint, 𝑝 , we derived the time re-

quired to reach a microcontroller’s logic threshold voltage (refer

to Eq. 3 and Eq. 6) by setting 𝑐 =100pF as a representative capaci-

tance [ESD Association 2020]. We denote the derived time as 𝑡
cal𝑝 .

To mimic the recognition stage, we perturbed 𝑐 from 100pF

by randomly sampling 𝑐 from a Gaussian distribution with 𝜇 =

100𝑝𝐹 and 𝜎 . We evaluated different 𝜎 values ranging from 0pF

to 5pF. For each 𝜎 , we sampled 𝑐 100 times, which corresponds

to testing the recognition with 100 participants. For each sam-

pled 𝑐 , we derived the corresponding time required to reach the

threshold voltage, 𝑡rec𝑝 , for all touchpoints. Then, for each touch-

point, we judged whether the touch recognition was correct if

arg min𝑞∈{1,· · · ,𝑁 } |𝑡rec𝑝−𝑡cal𝑞 | = 𝑝 (note:𝑁 is the number of touch-

points). We computed the average accuracy for the 100 sampled 𝑐

values and 𝑁 touchpoints for all 8 freeform interfaces.

Fig. 13 summarizes the results: the single-wire connection is

significantly more robust to a capacitance shift than the double-

wire for the 8 freeform interfaces. By comparing Fig. 11 and Fig. 13,

we can deduce that when the participants interacted with PAD_16,

the capacitance shift has an approximate strength of 𝜎 = 2𝑝𝐹 .

9.5.2 Mathematical Analysis. To theoretically validate the hypoth-

esis of the single-wireconnection being more robust, we perform a

mathematical analysis. To correctly recognize a touchpoint, 𝑝 , we

must satisfy two conditions:

|𝑡rec𝑝 − 𝑡
cal𝑝 | < |𝑡rec𝑝 − 𝑡

cal𝑝+1
| (8)

|𝑡rec𝑝 − 𝑡
cal𝑝 | < |𝑡rec𝑝 − 𝑡

cal𝑝−1
| (9)

These conditions avoid misrecognizing a touchpoint, 𝑝 , with its

two other adjacent touchpoints, 𝑝 − 1 and 𝑝 + 1. Note that when

𝑝 = 1, we only need to satisfy Eq. 8; similarly, when 𝑝 = 𝑁 , only

Eq. 9 is required.

9.5.3 Double-wire connection. We let 𝑐 be the capacitance during

the calibration stage and (𝑐 + 𝜖) be the capacitance during the

recognition stage. The goal is to derive the range of 𝜖 that satisfies

both Eq. 8 and Eq. 9. By referring to Eq. 3, we can derive the range

of 𝜖 as:

−𝑐
2

𝑟𝑝

𝑟
till𝑝

< 𝜖 <
𝑐

2

𝑟𝑝+1

𝑟
till𝑝

(10)

Figure 13: Results from the capacitance perturbation simu-

lation for the freeform interfaces. 𝜎 represents the strength

of the perturbation (specifically, capacitance values are sam-

pled from a Gaussian distribution with 𝜇 = 100𝑝𝐹 and 𝜎).

The single-wire connection is more robust to the capacitance

shift than the double-wire connection.

The upper and lower bounds correspond to satisfying Eq. 8 and

Eq. 9, respectively.

Single-wire connection. We derive the range of 𝜖 using Eq. 6.

Unlike the double-wire, the single-wire’s logarithmic term depends

on a touchpoint, 𝑝 . To simplify the math expression, we denote the

logarithmic term in Eq. 6 as 𝐿𝑝 . To satisfy Eq. 8, 𝜖 must satisfy:
𝜖 < 𝑐

2

(
𝑟

till𝑝+1
𝐿𝑝+1

𝑟
till𝑝𝐿𝑝

− 1

)
, if 𝑟

till𝑝+1
𝐿𝑝+1 − 𝑟

till𝑝𝐿𝑝 > 0

𝜖 > −𝑐
2

(
1 − 𝑟

till𝑝+1
𝐿𝑝+1

𝑟
till𝑝𝐿𝑝

)
, otherwise

(11)

Similarly, Eq. 9 corresponds to:
𝜖 < 𝑐

2

(
𝑟

till𝑝−1
𝐿𝑝−1

𝑟
till𝑝𝐿𝑝

− 1

)
, if 𝑟

till𝑝−1
𝐿𝑝−1 − 𝑟

till𝑝𝐿𝑝 > 0

𝜖 > −𝑐
2

(
1 − 𝑟

till𝑝−1
𝐿𝑝−1

𝑟
till𝑝𝐿𝑝

)
, otherwise

(12)

When we apply our resistance optimization (Sec. 6.3.2) to find

𝑟1, 𝑣𝑁 (0) is only slightly smaller than 𝑣
thres

(e.g., Fig. 8-b4). In this

case, we can assume 𝑡
cal𝑝+1

< 𝑡
cal𝑝 < 𝑡

cal𝑝−1
. By concurrently

considering this assumption with Eq. 11 and Eq. 12, we can derive:

−𝑐
2

(
1 −

𝑟
till𝑝+1

𝐿𝑝+1

𝑟
till𝑝𝐿𝑝

)
< 𝜖 <

𝑐

2

(
𝑟

till𝑝−1
𝐿𝑝−1

𝑟
till𝑝𝐿𝑝

− 1

)
(13)

Comparison. For the double-wire connection, as indicated by

Eq. 10, we can make the range of 𝜖 larger (i.e., more robust to the

capacitance change) by increasing 𝑟𝑝 and 𝑟𝑝+1 while keeping 𝑟
till𝑝

as small as possible. Also, since 𝑟
till𝑝 (i.e., 𝑟1 + · · · + 𝑟𝑝 ) increases as

𝑝 increases, generally, a larger 𝑝 is more difficult to achieve with

a wider range of 𝜖 . Based on these observations, to create a more

robust interface, the resistance values should be designed to have

𝑟1 < · · · < 𝑟𝑁 while ensuring a large difference between the adja-

cent resistance values. For example, we can set 𝑟𝑝 = 𝑎𝑟𝑝−1 where

𝑎 > 1. In this case, Eq. 10 becomes −𝑐 (𝑎𝑝−𝑎𝑝−1 )
2(𝑎𝑝−1) < 𝜖 <

𝑐 (𝑎𝑝+1−𝑎𝑝 )
2(𝑎𝑝−1) .

Ultimately, when 𝑎 → ∞, −𝑐/2 < 𝜖 < ∞. However, in practice, the
minimum resistance (𝑟1) and the maximum resistance (𝑟𝑁 ) should

be large and small enough, respectively. These considerations are

due to the limitations of the microcontroller’s measurement of time

delays, conduit volumes, and 3D printing resolutions. For example,

in a practical setting, we can set 𝑁 = 10 and 𝑎 = 1.1. This config-

uration setting leads to 𝑟𝑁 ≈ 2.4𝑟1 and the average range of 𝜖 is

0.28𝑐 for touchpoints 𝑝 = {2, · · · , 9} (i.e., 1

8

∑
9

𝑝=2
𝑐
𝑟𝑝+1+𝑟𝑝

2𝑟
till𝑝

). Note
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that when we do not apply this optimization using 𝑎 > 1, this range

becomes smaller: e.g., 0.23𝑐 when 𝑎 = 1.

For the single-wire connection, by referring to Eq. 13, we can

infer that increasing the range of 𝜖 can be achieved by having

relationships 𝑟2 > · · · > 𝑟𝑁 while keeping 𝑟1 as small as possible.

However, as discussed in Sec. 6.3.1, 𝑟1 must also satisfy 𝑟1 > (1 −
𝑣

thres
/𝑣in)𝑟till𝑁 . To perform a fair comparison with the double-wire,

we set𝑁 = 10, 𝑟𝑝−1 = 1.1𝑟𝑝 for 𝑝 ≥ 2 (i.e., corresponding to𝑎 = 1.1),

and 𝑟1 = 1.01(𝑟2 + · · · 𝑟𝑁 ). Here we assume the use of Arduinno

UNO R4 as a microcontroller, i.e., 𝑣in=5V, and 𝑣
thres

=2.5V. Note

that 𝑟1 is resistance of a resistor connected to a microcontroller

and can be easily adjusted and large unlike the other resistance

values. Then, this setting derives 0.33𝑐 as the average 𝜖 range for

touchpoints 𝑝 = {2, · · · , 9}. When 𝑟𝑝−1 = 𝑟𝑝 (i.e., a non-optimal

case), this range becomes 0.28𝑐 . These results support that the

single-wire connection can create more robust freeform interfaces

than the double-wire for our expected usage.

10 LIMITATIONS AND FUTUREWORK

This work introduces a computational design pipeline that em-

beds multiple capacitive touchpoints into any 3D model that has

a closed mesh without self-intersection. Our method exploits RC

Delay so that all touchpoints within our freeform interface can be

capacitively sensed using only a single-wire or double-wire con-

nection. Our six evaluations enable a thorough understanding of

the RC Delay capacitive sensing technique, highlighting areas of

improvement.

10.1 Supporting Smaller Objects

Our fabrication scalability evaluation demonstrates that our ap-

proach for the double-wire connection could potentially support

embedding a touchpoint for every 9mm distance. The single-wire

connection places stricter constraints on fabricating a freeform in-

terface with a smaller footprint (e.g., requiring over 30mm distance

between each pair of touchpoints). While our approach can gen-

erally support fabricating small objects (e.g., the smallest volume

we fabricated is 78284mm
3
for four touchpoints), future research

is necessary on fabricating smaller objects (e.g., robotic grippers).

Our current fabrication scalability is largely dictated by the resis-

tivity of the Protopasta conductive filament. Conductive filaments

(including the Protopasta’s) are typically used to connect electronic

components (i.e., the role of wires), and are manufactured to have

low resistivity. In contrast, our approach uses the conductive fila-

ment to create 3D printed resistors, requiring a different need of

electrical properties. In our case, as long as the filament is conduc-

tive, a larger resistivity is generally preferable. A larger resistivity

can help achieve the target resistance with a shorter conductive

trace length. Designing such a filament would make it possible to

fabricate smaller freeform interfaces.

10.2 Supporting More Distinct Signals

Our SNR evaluation highlights the robustness of our technique.

All of the reported values in Table 2 are above the minimum SNR

threshold (> 7) and achieve the standard for real-world applica-

tions (> 15) [Davison 2010]. The single-wire condition for Stanford

Bunny and Hilbert Curve significantly outperforms the double-wire

condition. Though we see a drop in performance for the PAD_16 for

the single-wire condition, this result also matches our discussion in

Sec. 6.3 and insights from Sec. 9.1. As expected, the single-wire con-

nection becomes more sensitive to noise if a freeform interface has

too many touchpoints. This limitation is enforced by the resistance

optimization discussed in Sec. 6.3.2. One possible improvement

could be relaxing the resistance value constraint we made for the

efficient optimization (i.e., 𝑟2 = · · · = 𝑟𝑁 ). Optimizing each individ-

ual resistance value would create more distinct signals. However,

we expect this approach would be subject to a much higher com-

putational cost. Similar to fabricating smaller objects, addressing

this challenge requires producing higher resistance within a small

volume. This could be achieved through the use of conductive fil-

aments that have higher resistivity and shorter conductive trace

lengths.

10.3 Supporting Real-Time Calibration

Adjustment

Though the SNR results highlight the robustness of our technique

to background noise, our user study highlights a limitation of our

pipeline. Currently, touchpoint selection is fully dependent on the

calibration data. During the time gap between the calibration stage

and touchpoint selection, if a change is introduced (e.g., a change

in participant’s capacitance or microcontroller performance), this

dependency without real-time adjustment can introduce significant

recognition errors.

The double-wire connection is more susceptible to errors due

to this dependency. In Sec. 6.3.1, we originally hypothesized that

the double-wire would perform better given how we can generate

numerous unique RC delays. In contrast, generating unique RC

delays with the single-wire connection is more restricted. However,

our user studywith PAD_16 highlighted the trade-offs of the double-

wire connection in real-world conditions. As discussed in Sec. 9.5,

our computational experiment and mathematical analysis validate

that if a change occurred after calibration, then the double-wire

connection has a more critical effect. This calibration shift did

not occur in the SNR tests given its short time duration (9 sec).

Thus, enabling more robust sensing will require future research

on improving calibration, such as including a real-time adaptive

baseline for adjustment.

We imagine such solutions can include internally routing an

additional wire that can gather baseline capacitance readings. An-

other solution is to use swept-frequency capacitive sensing [Sato

et al. 2012] with our technique. This combination can sweep dif-

ferent frequencies over a time window to sense whether the user

configuration has changed. Regardless, future solutions would re-

quire the system to automatically detect the user’s capacitance and

re-calibrate by referring to Eq. 3 or Eq. 6.

10.4 Supporting Multi-touch

Our approach demonstrated overall 91.42% recognition accuracy

(SE=1.329) for various objects across 10 participants. However, this

technique is currently limited to one touch selection at a time.

Future work should examine how to extend this technique to multi-

touch. This will require modifying the algorithms in the automatic

circuit design to account for multiple simultaneous touches. Given
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that RC delay values can be optimized with our approach, it is

possible to design the traces such that the sum of each combination

of RC delay values can also be a unique value. This approach is

similar to creating a resistor ladder [Chris 2018] in which different

combinations of resistors are used to uniquely identify multiple

switches in a single circuit. Another interesting research direction

would be to leverage machine learning to predict simultaneously

activated touchpoints based on changes in the RC delay signal.

11 CONCLUSION

We introduce a computational design pipeline that embeds mul-

tiple capacitive touchpoints into any 3D model that has a closed

mesh without self-intersection. The core of our approach is op-

timizing a phenomenon called RC Delay so that all touchpoints

within our freeform interface can be capacitively sensed using

only a single-wire or double-wire connection. By leveraging multi-

material printing, we achieve our research goal of streamlining

fabricating interactive 3D printed objects with complex geome-

try with minimal instrumentation. The strengths of our pipeline

(scalability, computational performance, robustness, accuracy, and

applicability) work towards 3D printing objects that are fully inter-

active and ready for use straight off the printer as final products in

real-world contexts.
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A EQUATION DERIVATIONWITH SYMBOLIC

PROGRAMMING

We derived Eq. 1 and Eq. 4 by utilizing Lcapy [Hayes 2022], a Python

library that can perform symbolic circuit analysis. Symbolic circuit

analysis can derive equations from given circuits and mathematical

symbols (in our case, 𝑣in, 𝑐 , 𝑡 , 𝑟1, · · · , 𝑟𝑛+1)

B IMPLEMENTATION

B.1 Software Implementation

The user interface to select the touchpoints in Fig. 4 is a web ap-

plication made using three.js [three.js authors 2023] and the three-

mesh-bvh [Johnson 2023] libraries. We implemented the algorithms

used in the automatic circuit design stage (Sec. 6) with Python 3 and

libraries for matrix computations and machine learning methods

such as NumPy/SciPy [Virtanen et al. 2020] and scikit-learn [Pe-

dregosa et al. 2011]. We used graph-tool [Peixoto 2014] to use

algorithms such as Dijkstra’s and A* for path finding. We used

PyVista [Sullivan and Kaszynski 2019] (a Python API for Visual-

ization Toolkit [Schroeder et al. 2006]) for 3D graphics-related op-

erations such as clipping, voxelization, and ray tracing. For the

resistance optimization for the single-wire condition, we used

Lcapy [Hayes 2022] and SymPy [Meurer et al. 2017] for the cir-

cuit simulation and symbolic computation and Pathos for multi-

processing. For the calibration, we utilized the sensing-network

library [Bae et al. 2024].

Table 3: Resistance values of conductive traces. Three sam-

ples (S1-S3) for each measurement. For the thickness of

the conductive trace, we followed our computational design

pipeline default (i.e., horizontal: 0.8mm, vertical: 1.2mm).

Conductive Trace

Length (mm)

S1 (Ω) S2 (Ω) S3 (Ω) Avg (Ω)

Horizontal

40 10600 10630 10600 10610

80 23330 23630 23110 23357

120 33290 33020 32470 32927

160 40200 43070 41600 41623

Vertical

10 10730 12500 10970 11400

20 26070 22670 24080 24274

30 37700 38830 28540 35023

40 43830 42600 38330 41587

B.2 3D Printing Hardware and Materials

To fabricate freeform interfaces with embedded multi-points within

one pass, we rely on a multi-material FDM 3D printer using non-

conductive and conductive filaments. We use a Snapmaker J1S

3D printer, which supports dual-nozzle printing. Both nozzles are
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(a) Resistance measurement for horizontal traces (b) Resistance measurement for vertical traces

Figure 14: Two linear regression models for (a) horizontal traces and (b) vertical traces.

0.4 mm standard soft brass. We set our print speed to 60 mm/s for

both conductive and non-conductive filaments. The layer height of

all prints is 0.24 mm.

Our conductive filament is Protopasta’s conductive PLA (1.75

mm) [ProtoPasta 2023]. This filament is commonly available and

provides a good balance of conductivity and resistivity to design a

sensing network. The non-conductive filament can be any standard

PLA filament. The print and build plate temperatures for both

filaments used were based on vendor recommendations.

The infill percentage differs for the four files discussed in Sec. 7.

The original body uses an infill of 20% using the gyroid pattern. In

some of our preliminary tests, we found that not having enough

infill (e.g., 0%) can cause parasitic capacitance [Riba et al. 2019]

where the coupled charge dissipates due to the air inside themodel’s

body. As such, we recommend choosing a range between 5–20%

infill to provide steady sensor readouts. The other STL files all have

an infill percentage of 100% using the rectilinear pattern.

B.3 Sensing System

For our microcontroller, we tested using the Arduino Uno R4 WiFi

(48MHz CPU), which has a 5V power source and a 2.5V logic thresh-

old. To constantly measure the time delays, we utilized digital sig-

nals from the microcontroller’s digital I/O pins.

C MEASUREMENT OF CONDUCTIVE TRACE’S

RESISTANCE

We conducted an empirical investigation to understand the re-

sistivity properties of the conductive filament. We measured the

conductive traces horizontally and vertically as our 3D printed con-

ductive traces are drawn in a serpentine trace pattern. We produced

three samples of each measurement, and we used Fluke 115 Digital

Multimeteter to measure each object’s resistance (Table 3). See the

supplemental materials to see the STL files.

In Fig. 14, we used the average values in (Table 3) to plot the rela-

tionship between the conductive trace’s length and measured resis-

tance. The two linear regression models informed how to generate

the conductive traces during the circuit embedding step (Sec. 6.2).
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