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Figure 1: High-level overview of our computational design pipeline: (a) Our pipeline begins with an input model and the user
selects different areas on the model’s surface to turn into touchpoints; (b) computes a graph-based path to serially connect the
touchpoints; (c) generates an internal circuit design to embed capacitive sensors inside the object; and (d) fabricates the object
and internal circuit using multi-material 3D printing to be used as a sensing interface with only 1 or 2 wire connections.
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ABSTRACT

Producing interactive 3D printed objects currently requires labo-
rious 3D design and post-instrumentation with off-the-shelf elec-
tronics. Multi-material 3D printing using conductive PLA presents
opportunities to mitigate these challenges. We present a computa-
tional design pipeline that embeds multiple capacitive touchpoints
into any 3D model that has a closed mesh without self-intersection.
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With our pipeline, users define touchpoints on the 3D object’s sur-
face to indicate interactive regions. Our pipeline then automatically
generates a conductive path to connect the touch regions. This path
is optimized to output unique resistor-capacitor delays when each
region is touched, resulting in all regions being able to be sensed
through a double-wire or single-wire connection. We illustrate our
approach’s utility with five computational and sensing performance
evaluations (achieving 93.35% mean accuracy for single-wire) and
six application examples. Our sensing technique supports exist-
ing uses (e.g., prototyping) and highlights the growing promise to
produce interactive devices entirely with 3D printing.
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1 INTRODUCTION

Despite recent advances, the overall design and manufacturing pro-
cess to fabricate interactive 3D printed objects is time-consuming
and fragmented. Embedding off-the-shelf electronic components
(e.g., sensors [Wang et al. 2020; Zhu et al. 2020a] or LEDs [He et al.
2022; Savage et al. 2014]) into 3D prints is a popular approach, ad-
hering to the traditional design process that separates form (i.e.,
designing a 3D model) and interactivity into two individual pro-
cesses. However, this approach introduces two challenges. First,
it requires users to design around the electronic components and
their predefined shapes and dimensions. This constraint makes it
difficult to integrate electronics into complex geometries, such as
curved or organic shapes or thin-walled structures with limited
bounding volume (e.g., sword, robotic tactile sensors [Kohlbrenner
et al. 2025]). Second, it requires users to have extensive knowl-
edge spanning electronics, computer-aided design, and fabrication.
Each step is compartmentalized to a dedicated software, such that a
change requires modifying subsequent steps through extensive trial
and error. Our work is motivated by the following question: how
can we effectively streamline the process of manufacturing interactive
3D printed objects?

Multi-material printing can help address these challenges while
presenting new design opportunities. Namely, it can bridge the
two aforementioned processes (i.e., form, interactivity) into one
streamlined process. As one example, we can use conductive fila-
ments to 3D print electronics, such as wires and resistors, directly
into the target object and minimize post-instrumentation. Mini-
mizing instrumentation can enhance durability [Zhu et al. 2020a],
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aesthetics [Olberding et al. 2013; Zhu et al. 2020a], and space ef-
ficiency [Dahiya et al. 2009] while simplifying (dis)assembly [He
et al. 2022; Wen et al. 2025] and reducing costs [Rupavatharam et al.
2023]. This bridging can lead toward the broad vision of 3D printing
objects that are fully interactive and ready to be used straight off
the printer.

To this end, our primary contribution is a computational design
pipeline that leverages multi-material printing to embed multiple
capacitive touchpoints into any 3D model that has a closed mesh
without self-intersection (Fig. 1). Our approach focuses on abiding
by the given geometric constraint of a 3D model as opposed to
modifying it. After users select touchpoints and wiring connection
point(s) on the model’s surface, our pipeline employs a graph-based
pathfinding algorithm to serially connect the touchpoints (Fig. 1b)
and then uses the resulting path to generate conductive traces (i.e.,
3D printed resistors) between each pair of touchpoints through
a serpentine trace space-filling algorithm (Fig. 1c). These conduc-
tive traces are optimized to achieve electrical resistance across the
user-defined touchpoints to exploit a phenomenon called resistor-
capacitor (RC) delays. By creating unique RC time delays for all
touchpoints, each touchpoint can be capacitively sensed using only
a single-wire or double-wire connection (Fig. 2).

Achieving interactivity with a single-wire is the extreme case of
minimal instrumentation. Our secondary contribution is a thorough
investigation of how to achieve this extrema and its mathematical
and computational boundaries. This approach enables interactivity
in 3D printed objects for an extensive range of 3D geometry while
even improving overall sensing reliability (cf. Sec. 9.5). Prior works
have also leveraged multi-material 3D printing with conductive
materials to create interactive objects. However, these objects ei-
ther still require significant instrumentation (e.g., n wires linked
to a microcontroller to enable n touchpoints) [Palma et al. 2024;
Pourjafarian et al. 2019; Schmitz et al. 2015, 2019]. Our work high-
lights how we can fabricate interactive objects irrespective of their
complex geometry with minimal instrumentation.

We demonstrate the scalability, computational performance, ro-
bustness, accuracy, and applicability of our approach with corre-
sponding technical evaluations. For scalability, our approach can
embed 20 touchpoints into a 3D object using a single-wire con-
nection when there is at least 40mm of distance between each
pair of touchpoints. This distance can be further reduced to 12mm
through parameter adjustments. Our sensing evaluation highlights
real-time recognition of 93.35% mean accuracy for the single-wire
connection and 89.49% mean accuracy for the double-wire connec-
tion by testing with 8 different objects. The higher accuracy of the
single-wire connection is further validated by our robustness evalu-
ation. Also, through this robustness evaluation, we further discuss
how to better improve the recognition accuracy for both single-
wire and double-wire connections. Our six applications—Stanford
Bunny, MIDI Drumpads, Hilbert Curve, Chinese Character (Power),
Chinese Lion, and Globe—demonstrate our method’s flexibility in
supporting a range of geometries with varying complexity (Fig. 9).

The source code of our computational design pipeline and supple-
mental materials can be found at https://github.com/d-rep-lab/3dp-
singlewire-sensing. A video demonstration of our sensing tech-
nique can be found in the supplemental materials.
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Figure 2: Capacitive sensing for the Stanford Bunny: (a) overall schematic on how the five touchpoints are connected via
conductive traces (colored blue) and connected in series to a microcontroller’s circuit using two wires; (b) the circuit diagram
corresponding to (a) with the representative resistance and capacitance measurements. Each colored dashed wire corresponds to
a case when a point is touched (e.g., orange: tail, green: foot); and (c) the voltage change measured at the microcontroller’s receive
pin when a point is touched. (d-f) correspond to (a—c) but the Stanford Bunny is connected in parallel to a microcontroller’s

circuit using one wire.

2 RELATED WORK

Our work builds on prior research that demonstrates ways to com-
putationally design and fabricate interactive objects and capacitive
sensors with 3D printing.

2.1 Interactive 3D Prints Using Electronics

Electronic components (e.g., motors, LEDs) offer versatile func-
tionalities and are the backbone of most interactive devices we
encounter. The most popular interactivity mechanism for modern
3D printed objects is embedding or attaching off-the-shelf electronic
components to 3D printed objects [Ballagas et al. 2018]. However,
integrating off-the-shelf electronic components into 3D prints can
be challenging. An individual must design an object around these
components, ensuring that they can be inserted and wired accord-
ingly post-fabrication [Ballagas et al. 2018; Groeger et al. 2016;
Palma et al. 2024; Peng et al. 2015; Savage et al. 2013; Swaminathan
et al. 2020].

Computationally designing the location of electronic compo-
nents can reduce design labor as well as minimize instrumentation.
For example, SurfCuit [Umetani and Schmidt 2017] and MorphSen-
sor [Zhu et al. 2020b] allow makers to computationally preview
component placement (e.g., resistors and integrated circuits) on the
exterior surface of an object and then manually connect them with
conductive tape once the object is 3D printed. DefSense [Bacher
et al. 2016] computationally designs channels so that wires and
sensors can be embedded into a 3D print to enable deformation

sensing. Similarly, ModElec [He et al. 2022] further reduces manual
labor of wiring by generating 3D-printable conductive traces with
A search algorithm [Hart et al. 1968].

While these approaches help reduce design challenges, their
methods still must account for the external physical electronic
components. This reliance can influence the design of the object
(e.g., prevent a small footprint) and still requires significant wiring
and/or assembly, especially to integrate sensors. In contrast, our
work aims to fabricate electronics as part of the 3D printing process,
contributing to emerging research on 3D printable electronics [Es-
palin et al. 2014; Flowers et al. 2017; Goh et al. 2021; Macdonald
et al. 2014]. In our approach, conductive traces are automatically
generated and 3D printed inside an object to act as resistors. This
approach supports any 3D models that have a closed mesh with-
out self-intersection, reduces the need for manual assembly, and
minimizes the use of additional electronic components.

2.2 3D Printed Capacitive Sensors

Capacitive sensing is a popular technique to capture touch input on
devices by capacitively coupling the human body to a conductive
material (e.g., an electrode or wire). We refer readers to Grosse-
Puppendahl et al. [2017]’s survey highlighting how capacitive sens-
ing has been used in various human-computer interaction (HCI)
contexts. Embedding conductive materials—including conductive
filament—into 3D printed objects can enable capacitive sensing.
These 3D printed objects generally fall under two categories: they
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Figure 3: A computational design pipeline to create a freeform interface with embedded capacitive touchpoints. Rounded
rectangles represent output data or physical objects. Arrows represent different processes. Each image at the bottom is the
corresponding output data (i.e., rounded rectangles) from the computational pipeline.

are either designed with a conductive bottom surface that can
be sensed on touchscreen devices [Schmitz et al. 2021, 2017] or
with conductive regions that can be wired to an external micro-
controller [Bae et al. 2024; Burstyn et al. 2015; Palma et al. 2024;
Schmitz et al. 2015].

Our approach aligns with the second category. Several prior
works [Alalawi et al. 2023; Bae et al. 2024; Burstyn et al. 2015; Tke-
matsu and Siio 2018; Kato et al. 2020; Palma et al. 2024; Schmitz
et al. 2015, 2019; Takada et al. 2016] demonstrate techniques to
generate electrical traces within a 3D model. The resulting 3D
printed objects have multiple touchpoints for sensing once they
are connected to a microcontroller. However, the majority of these
approaches [Burstyn et al. 2015; Ikematsu and Siio 2018; Kato et al.
2020; Palma et al. 2024; Schmitz et al. 2015, 2019; Takada et al.
2016] still require significant instrumentation (e.g., n wires con-
nected to a microcontroller to sense n touchpoints). In contrast, our
work focuses on minimal instrumentation, requiring only either
a single-wire or double-wire connection(s) (Fig. 2). Our previous
work [Bae et al. 2024] also explored how to reduce instrumentation
but is limited to only network-like geometry (i.e., spheres and cylin-
ders) [Rossignac 2005]. This severe constraint cannot generalize
to arbitrary 3D forms. Our current approach lifts this constraint
by supporting any closed, non-self-intersecting mesh, regardless of
geometric or topological complexity. This capability expands the
design space to fabricate complex geometric models with intrinsic
interactivity, eliminating the need for post-processing. Furthermore,
we deepen the technical foundation of this minimal instrumentation
approach by systematically optimizing the circuit design needed
to enable accurate single-wire sensing of multiple touchpoints (cf.
Sec. 6.3).

3 PRINCIPLE OF CAPACITIVE SENSING WITH
RC DELAY

Our computational design pipeline enables embedding multiple
capacitive touchpoints within a 3D object such that all touchpoints
can be sensed using only a single-wire or double-wire connection
(Fig. 2). We provide a short introduction to capacitive sensing using
RC delay, which is the key principle underlying our approach.

In a capacitive sensing circuit, when a user touches a conductive
element (e.g., electrode), the user’s body and the element become
capacitively coupled [Grosse-Puppendahl et al. 2017]. This coupling
induces an RC delay in the sensing circuit. RC delay is the time
required to charge a capacitor in a circuit through a particular
amount of electrical resistance. Increasing the resistance in a circuit
will generally increase the amount of time needed to charge the
capacitor, thereby creating a larger RC delay. If each conductive
element in a circuit needs a different amount of time to charge
when touched, we can infer what is being touched by measuring
the time needed to reach a predefined voltage threshold (e.g., 2.5V)
on a microcontroller. In our pipeline, the electrical resistance for
each conductive touchpoint is optimized to achieve a different RC
delay by varying the length of the conductive trace between each
pair of touchpoints.

Fig. 2 illustrates this sensing principle with the Stanford Bunny as
our freeform interface. As shown in Fig. 2c, 0 ps indicates the base-
line in which no touchpoints are touched. Touching the bunny’s tail
requires 8 ps to reach the voltage threshold, while its foot requires
28 ps. Using this approach, we can detect multiple capacitive touch-
points by connecting the 3D printed object to a microcontroller
with either two (Fig. 2a—c) or one wire (Fig. 2d—-f). A single-wire
connection results in a parallel circuit, while the double-wire con-
nection results in a series circuit. The difference between these
two circuit configurations results in different possible ranges of RC
delays (Fig. 2c vs. Fig. 2f).

4 COMPUTATIONAL DESIGN PIPELINE
OVERVIEW

The main objective of our computational pipeline is to embed mul-
tiple capacitive touchpoints into a freeform model. Our pipeline
can work for any 3D models that have a closed mesh without self-
intersection. To achieve this goal, our computational pipeline (Fig. 3)
is divided into three stages: interface design (Sec. 5), automatic cir-
cuit design (Sec. 6), and fabrication and use (Sec. 7).

Interface Design. In this first stage, the designer prepares a freeform
model by either 3D modeling with a CAD software or uploading
an existing 3D model. Afterward, the designer (1) selects where the
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Right click rotate, left click drag selection, double-click reset.

a

Figure 4: 3D model of the Stanford Bunny with five selected
touchpoints (foot, nose, left ear, right ear, and tail) and two
wiring connection points. The right ear and the two wiring
points are hidden from the viewpoint. The orange meshes
indicate the user’s lassoed selections. The dashed lines in (a)
show where users can download the selected mesh coordi-
nates.

touchpoints will be on the 3D geometry’s surface and (2) chooses
the connection points (i.e., one or two) that will connect the 3D
printed object to a microcontroller (see Fig. 2a,d).

Automatic Circuit Design. After selecting the touchpoints and
wiring connection point(s) on the freeform model, the second stage
uses our computational algorithms to generate the necessary ge-
ometry to route conductive traces throughout the freeform model.
This step consists of two stages. First, our graph-based pathfinding
algorithm computes a path to serially connect all the touch and
wiring points. Next, to produce sufficient resistance between each
touchpoint for the RC delay, our space-filling algorithm draws long,
thin conductive traces within the path.

Fabrication and Use. At the final stage, the designer uses the
fabrication data from the second stage to print the model. The 3D
printed object is connected to a microcontroller with either one or
two wires. After calibrating all touchpoints to sense touches, the
freeform interface is ready for use.

In the following sections, we use the Stanford Bunny with a
double-wire connection (Fig. 2a) to illustrate the computational de-
sign pipeline. The double-wire connection serves as the foundation
to understand how we can implement a single-wire design (Fig. 2d).

5 INTERFACE DESIGN

The designer manually designs a freeform model or uses an existing
model, and selects the coordinates of the touchpoints and wiring
connection points on the 3D model’s surface. Our pipeline allows
a designer to use any software of their choice (e.g., Fusion360,
Rhino) to generate the coordinates. We also provide a web-based
user interface (UI) (Fig. 4) to help facilitate this step. To select
the touchpoints and wiring connection points, the web-based UI
requires the following steps.

SCF 25, November 20-21, 2025, Cambridge, MA, USA
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Figure 5: Automatic circuit design. (a) Our automatic circuit
design first generates a circuit template, which outlines how
we will embed the touchpoints and conductive traces inside a
freeform interface. (b) During circuit embedding, serpentine
trace patterns are generated inside low conductivity conduits
by using a space-filling algorithm. (c) The output is fabrica-
tion data (STL files), which will be used for multi-material
printing.

Upload STL File. The designer uploads the STL file of a freeform
model to the web-based UL The uploaded file is then rendered as a
3D model for the designer to pan, rotate, and view.

Select Touchpoints and Wiring Connection Points. After view-
ing the model, the designer can freely lasso different areas on the
model’s surface to indicate where the touchpoints and wiring con-
nection points would be placed. Fig. 4 shows an example where the
user has converted the Stanford Bunny’s nose, foot, ears, and tail
as touchpoints.

Export Coordinates. Once the point selection has been finalized,
the designer can export the points’ coordinates (Fig. 4a). The cen-
troids of these coordinates will be used to generate touchpoints
and wiring connection points on the surface of the freeform model.

6 AUTOMATIC CIRCUIT DESIGN

The objective of the automatic circuit design stage is to generate
the appropriate internal circuit design that will be embedded in the
freeform model. This stage is fully automatic and does not require
any active involvement from the interface designer.

The automatic circuit design is broken into two sub-stages. The
first step is to generate a circuit template (Sec. 6.1). A circuit tem-
plate specifies the geometry of points (touchpoints, wiring points)
and conduits (Fig. 5a). This information is used to embed the inter-
nal circuit design into the freeform model in the subsequent step.
Next, in the circuit embedding step (Sec. 6.2), our algorithm uses
the information from the circuit template to draw the conductive
traces for 3D printing using a space-filling algorithm (Fig. 5b,c).

For both substages, we use the following terminology: points
referring to the touchpoints and the wiring connection point(s);
conduits as the generated pipes within the freeform models’ volume.

6.1 Circuit Template Generation

Generating a circuit template requires two sets of information.
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Figure 6: Representations involved in pathfinding: (a) input 3D model for pathfinding; (b) voxel representation of the input
model; (c) voxel representation after trimming voxels close to the model’s surface; (d) graph representation of the trimmed
voxel representation, where a vertex closest to each touchpoint is colored red; (e) a close-up look of the graph representation;
and (f) identified paths using Dijkstra’s pathfinding algorithm. Except for (e), all figures share the same camera position and
angle. For presentation purposes, the voxel and graph representations have lower resolution (i.e., smaller numbers of voxels

and vertices) than implemented.

Preparing Point Geometry. The first step of the circuit template
generation is to prepare the geometry of the points by using the
coordinates of touchpoints and wiring connection points (cf. Sec. 5).

Touchpoints. We ensure that the geometry of touchpoints is
bounded within the freeform model’s volume with two steps. The
first step involves generating a 3D geometry at the centroid of
each touchpoint’s coordinate. We default to a sphere with a 12mm
diameter, but other sizes and types of 3D geometries can also be
considered depending on the designer’s needs. We then volumet-
rically clip the sphere based on its intersection with the freeform
model’s surface.

Wiring Connection Points. For the wiring connection point(s), we
generate a cylinder that intentionally extrudes beyond the model’s
surface (Fig. 5a). A cylindrical design allows external wires (e.g.,
alligator clips) to easily connect to the freeform model at the fab-
rication and use stage. To achieve this cylindrical design, we first
compute both the centroid and normal of a polygon at the specified
coordinates of the wiring connection point(s). We then generate a
cylinder with a 4mm diameter and that is 10mm long. These dimen-
sions are arbitrary and sufficient for an alligator clip to grip onto.
We use the centroid as the cylinder’s center and the normal as the
cylinder’s axis. The cylinder’s height, diameter, and axis direction
can also be manually specified.

Routing Conduits with Pathfinding Algorithm. Next, we generate
conduits (i.e., 3D pipes). The conduits serve two purposes. First, they
will connect the points within the 3D model’s bounding volume.
Second, they will house the 3D printed conductive traces.

We first need to consider how to connect points. Although the
connection of points can be either in series or parallel, we focus only
on a series connection. A series connection is simpler to design for
an RC circuit as well as controlling the RC delay. In addition, based
on our assumption that the freeform model has a closed mesh
without self-intersection, we expect the model to have enough
volume to construct a series connection within the model.

To make a series connection, we need to decide the order of
the points. In the case of the double-wire connection, the first and
last points are the wiring connection points. For the single-wire
connection, the first point corresponds to the wiring connection
point. The designer can manually specify which points are used as
the wiring connection point(s). By default, the remaining points

(i.e., touchpoints) are connected in the selected order during the
interface design stage. For example, the point order for Fig. 5a is the
following: first wiring connection point, tail, foot, right ear, nose,
left ear, and second wiring connection point.

We then route the conduits to connect the points in the specified
order with our graph-based pathfinding algorithm. Our pathfinding
algorithm consists of four steps: (1) voxelize the freeform model,
(2) trim the voxels that are close to the freeform model’s surface, (3)
construct a weighted neighbor graph with the remaining voxels, and
(4) find the shortest path between each point to connect all points.
These steps are visually summarized in Fig. 6. The shortest path is
used to ensure there is sufficient space to generate other conduits
with the remaining bounding volume. To help distinguish from
the terminology used for the circuit template design (i.e., points,
conduits), we use graph, vertices, and edges as specific terminology
for our pathfinding algorithm.

(1) Voxelize the freeform model (Fig. 6b). Voxelization is necessary
to prepare a graph that will route the conduits inside the
freeform model’s bounding volume. We generate a voxel
representation of the model using a specified voxel size. By
default, our pipeline uses 0.5% of the maximum dimension
of any side of the model’s bounding box.

(2) Trim the voxels close to the model surface (Fig. 6¢). If a conduit
is placed too close to the model surface, it can introduce
parasitic capacitance (i.e., unintentional capacitance) during
use. Parasitic capacitance is non-ideal as it can influence the
overall sensing capability. Thus, we trim the voxels that are
too close to the model surface (by default, 3mm from the
surface).

(3) Construct a weighted neighbor graph (Fig. 6d,e). We generate
a weighted neighbor graph from the trimmed voxel repre-
sentation. We first compute the distance between each voxel
and then construct a k-nearest neighbor graph based on
the distances (k = 10 by default). This process generates
a graph consisting of vertices corresponding to the voxels,
the edges of neighbor relationships, and the edge weights
corresponding to the distances.

(4) Find the shortest paths (Fig. 6f). We can find the shortest path
between a pair of vertices using a pathfinding algorithm such
as Dijkstra’s algorithm or A* [Hart et al. 1968]. By default, we
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employ Dijkstra’s algorithm, but our implementation is flexi-
ble to switch to other pathfinding algorithms. We iteratively
perform this pathfinding step to find the route that connects
all points in series. In parallel, our algorithm aims to avoid
overlapping conduits with each other. Since conduits will
house the conductive traces, an overlap can change the cir-
cuit design. After each iteration, we assign a large penalty
for the edge weights (300 mm) that have already been used
or are too close to the found path. Although the shortest path
is generally preferable to ensure sufficient space, the path
between two points may be too short to generate sufficiently
large resistance in the circuit embedding step (Sec. 6.2). To
resolve such a case, we provide two options. The first option
is to randomly permute the connection order of touchpoints
until all paths become longer than the designer-specified
lengths. The second option is to run our shortest path find-
ing algorithm multiple times. Due to the penalty added in
the edge weights, the algorithm can make a path gradually
longer.

After the route of the conduits is finalized, the conduits are then
rendered as 3D pipes (5mm diameter by default). We chose 5mm
as our default to provide enough space to generate the serpentine
trace patterns with our nozzle’s extrusion width (0.4mm).

6.2 Circuit Embedding

We use the circuit template to generate the freeform model’s inter-
nal circuit design. 3D printing the circuit requires a combination
of conductive and non-conductive materials. As mentioned, points
are the touchpoints and wiring connection points are filled with a
large amount of conductive filament (100% infill) by default. As a
result, points have high conductivity and negligible resistance. In
contrast, the generated conduits can have either high conductivity
or low conductivity (Fig. 5a). The conductivity is determined based
on the conduit’s role in the internal circuit.

Conduits that originate from the wiring connection point(s) have
high conductivity (brown links in Fig. 5a). These conduits are meant
to act as wires (i.e., negligible resistance). Similar to points, the high
conductivity conduits will also be 3D printed with a 100% infill
with a conductive filament. In comparison, the conduits between
each pair of touchpoints have low conductivity (yellow links in
Fig. 5a). The low conductivity conduits act as resistors. To leverage
RC delay for capacitive sensing, these low conductivity conduits
need to achieve high resistance within their limited volume.

We achieve high resistance by drawing a thin, long trace of the
conductive filament using a serpentine trace pattern [Soh et al. 2009]
inside the low conductivity conduits (Fig. 5b). Due to the resistivity
law, a thinner conductive trace will provide lower conductivity
and higher resistance. The thickness of the conductive traces varies
when drawing the trace on the xy-plane versus along the z-direction.
The thickness for the xy-plane can be close to the printer’s nozzle
extrusion width (e.g., 0.8mm), while the thickness for z-direction
should be at least twice the extrusion width (e.g., 1.2mm) to ensure
contact with the previously printed layer. The variance in thickness
is to account for the printing resolution of common FDM printers.
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To support a wide range of geometry, our pipeline needs to be
able to handle curved conduits. We designed a space-filling algo-
rithm to draw serpentine trace patterns in these curved conduits.
For a given z-coordinate along the xy-plane, we cast multiple rays
that are parallel to each other. Each ray finds the intersection points
with the conduit and creates line segments by connecting the in-
tersection points. By alternatively connecting one line segment’s
endpoint and another line segment’s start point, we can obtain
a serpentine pattern for one layer (Fig. 5b). We repeat this pro-
cess while gradually increasing (or decreasing) the z-coordinate,
resulting in multiple layers of serpentine patterns. We then connect
these serpentine patterns with a staircase pattern using vertical
lines along the z-direction. We also need to consider how much
of a margin should be between each ray as well as between each
layer. The margin must be larger than the printer’s nozzle extrusion
width. Based on the specifications of most FDM printers, we use
1.2mm as the margin for both the ray and layer by default.

After generating all circuit components described above, the
internal circuit design is output as STL files for multi-material 3D
printing.

6.3 Supporting Cases Using a Single-Wire
Connection

The serpentine pattern described in Sec. 6.2 aims to achieve high
resistance for the conductive traces in the low conductivity con-
duits. Our analysis reveals that we can support the double-wire
connection as long as each low conductivity conduit has sufficiently
high resistance (Sec. 6.3.1). However, to support a single-wire con-
nection, there are additional requirements: we need to carefully
control the interplay of all resistances in the circuit. This additional
requirement stems from how the single-wire connection results in a
parallel circuit, while the double-wire connection results in a series
circuit (see Fig. 2). To handle the differences in the overall circuit
configuration, we first discuss the theoretical differences between
the double-wire and single-wire connections. We then introduce
an optimization method to support multiple capacitive touchpoints
with a single-wire connection.

6.3.1  Single-Wire vs. Double-Wire Connections.

Double-Wire Connection. When a freeform model is connected to
the microcontroller with two wires like Fig. 2a, we only need to en-
sure each low conductivity conduit has sufficiently large resistance
(e.g., 50kQ, cf. Sec. 9.1). The large resistance allows a microcon-
troller to have enough buffer to capture the RC delay differences
among the touchpoints. We now discuss in detail the reasoning
behind this simple requirement.

We assume the circuit shown in Fig. 7a, where R; is a resistor
connected to a microcontroller and Ry, - - - , Ry (N: the number of
touchpoints) are the resistors embedded into the 3D printed object.
The microcontroller has a voltage source with vj, and a resistor
between its voltage source and receive pin. For convenience, we
denote this microcontroller’s resistor as Ry.1. Also, we denote
R;’s resistance as r; (i = {1,---, N + 1}). In addition, the capacitor
formed by touch has capacitance c.
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Figure 7: Analysis of a double-wire connection. (a) shows the
circuit schematic for the double-wire connection, where the
pth touchpoint is selected. (b) compares the voltage changes
and time delays induced when pth and (p + 1)th touchpoints
are touched.

When touching the pth touchpoint (1 < p < N), the voltage
change measured at the receive pin can be written as:

2 2
FN+1"MillpTafter p

Iran ) )
. 2
Cr r.
tillpafterp Tall (Zf:o Ti rafterp)

0p(1) = tin (1 ~ exp (— M

where t is the time to charge a capacitor; ry = Z?I;ll rji Teillp =
Z‘;J:l rj; and rafier, = Z?’:;LI rj (see Appendix A for the deriva-
tion). To induce a high-impedance state for the receive pin, ry4; is
usually very large (e.g., 100MQ). This value is pre-determined by

the microcontroller’s manufacturer. When ry, - - - , rn are relatively
small (e.g., 100kQ), we can approximate Eq. 1 as:
t
0p(t) = vjp (1 —exp |- (2)
Criillp

From Eq. 2, we can approximate the time required to reach a
microcontroller’s logic threshold voltage, vy,res as followed:

Yin
lthresp * CTtillp In (—) ®3)
Uin ~ Uthres

Fig. 7b summarizes the key theoretical relationships that we de-
rived from the equations above. Using Eq. 3, we can consider that the
RC delay only depends on ryy P the cumulative sum of resistance
values involved from the voltage source to a selected touchpoint. We
further derive that ty,pes p+1 ~ Tthresp = CTp+1 In(vin / (vin — Vthres))-
This equation indicates that larger resistance for each of r, - - -, ry;,
results in larger differences between fiy e p and tipres p+1- Note:
tihres1 < lthresz < "*° < tthresy Decause ¢ > 0, rp, > 0, and
In(vin/(0in — Vthres)) = 0.

From the observations above, we can support the double-wire
connection by generating a serpentine trace pattern that is as long
as possible within a conduit’s volume (Sec. 6.2). Thus, we only need
to ensure that fij eg p1 ~ lthresp 1S large enough for a microcon-
troller to measure (e.g., 200 clock cycles of a microcontroller’s CPU).
Note that when ry), is extremely large, fipyes, may be too large
to provide reasonable latency for interactivity (e.g., when ty eg p >
10ms). However, the possibility of this situation is rare. For exam-
ple, a hypothetical scenario where ty, 5 p > 10ms would require

Bae and Fujiwara et al.

a [IMicrocontroller b S b1
Ri(nQ) [13D-printed object L4
9 ©
Re (,Q) S V=25 )
2 (7
z &2 r=100kQ — 1
v r, = 100kQ — 2
: 2, r=100kQ — 3
3
Rp (7. Q < 0 50 100
pthtouch Pt Time (us)
i S =
point 2 oz ’ -
54
RN (ry€2) s
C(cfarad) S
c / 13
= ' a2 r=300kQ — 1
Vin (v;,volt) Receive e = 100k — 2
T—:— pin =—GND —=—oGND 8 7y = 100kQ — 3
R+ (1) 2% 50 100
Time (us)
s
= b3
C % 4
n 2
3 ]
8000 1 =< 0 Z , = p
8 & 7, = IMQ 1
M., 2 7= 100kQ — 2
| < ] 7 = 100kQ — 3
aﬁooo 4] &% 50 100
X § 60 Time (us)
([
4000 { £ S [ba
e~ g
s
2000 A E z, = o
S| = 7 = IMQ 1
g 7, = 300kQ — 2
o . B 7, = 300kQ — 3
0 500 1000 1500 2000 g0 50 100
r(kQ) Time (us)

Figure 8: Analysis of a single-wire connection. (a) shows the
circuit schematic for the single-wire connection where the
pth touchpoint is selected. (b) compares the voltage changes
across different variations of three resistance values (r1, ra, 3).
(c) shows the minimum differences among i es1, tthres2s fthress
for the different variations of r; and r (note: here ro=r3=r). A
white grid cell indicates a violation of the hard constraint of
r1. For (b) and (c), we assume a case using the Arduino UNO
R4 (i.e., vin = 5V, Vgpres = 2.5V) and ¢ = 100pF.

il > 140MQ when using the Arduino UNO R4 as the micro-
controller (viy=5V, vipres=2.5V) and ¢ =100pF as a representative
capacitance [ESD Association 2020]. Generating conductive traces
where ry, > 140MQ inside a freeform model is almost infeasible.

Single-Wire Connection. For the single-wire connection, we con-
nect the freeform model to a microcontroller as shown in Fig. 8a.
This connection makes a branch in the electrical path (i.e., forming
a parallel circuit). Consequently, for the single-wire connection, we
obtain the measured voltage change at the receive pin as:

2
1 "N+ t(ri+rn+)
up(F) = v; 7 - exp | —
p (1) = vin s ( N+ sty P\ T e, —10)

4)
Similar to the double-wire connection, we can approximate Eq. 4
as:
r t
0p(t) = ojp (1 - ——exp |- (5)
Ttillp Criillp

Then the approximate time required to reach a microcontroller’s
logic threshold voltage is:

i ) ©)

tthresp = CTtillp In -
Tiillp Yin ~ Uthres
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We can observe that the difference between Eq. 5-6 and Eq. 2-3
is the coefficient ry /ryy p (Or i, /7r,)- This coefficient introduces
greater complexity for the single-wire connection compared to
the double-wire connection. The most critical difference from the
double-wire connection is the voltage measured at the receive pin
at t=0: vp(0) = vju(1 — rl/rtillp). This indicates v, (0) changes
depending on the relationships between r; and ryj; » (note: p=
1+ +rp). Additionally, the coefficient, r1/ryy P influences the
slope of the exponential function in Eq. 5. These facts suggest that
we need to carefully select r1 and {ry, - - - , v} to support the single-
wire connection. This selection requires two considerations.

First, we have a hard constraint for r1. To sense a selected
touchpoint, we must avoid where v, (0) > vOypyes (i€, 71/ rilly <
1 —Othres/in)- For example, Fig. 8-b1 reflects this violation, and a mi-
crocontroller would not be able to detect if a touchpoint has been se-
lected for two of the points (i.e., p = 1 and p = 2). Thus, to ensure all
touchpoints can be sensed, we must satisfy r1 /ryn p > 1~ Vthres /Vin
for all touchpoints. If using the Arduino UNO R4, 1—0,1e5/0in = 0.5;
thus, the hard constraint corresponds to ry > rz + - -+ ryn. This
indicates that r; must be greater than the cumulative sum of the
resistance inside the freeform model.

Second, to maximize the difference in ty, e » for each touchpoint
(e.g., pth vs. (p + 1)th touchpoint), we need to resolve the complex
relationships among r1 and ry, - - - , rn. Fig. 8b shows four variations
that use different resistance values for the same example. Among
the four variations, Fig. 8-b4 achieves the maximum difference
in fipres, for each touchpoint. To find the configuration with the
largest difference in fypyes, for each touchpoint, we introduce a
heuristic resistance optimization for the single-wire connection.

6.3.2  Resistance Optimization. Our heuristic resistance optimiza-
tion for the single-wire connection consists of two steps: (1) identify
the appropriate resistance values and (2) adjust the geometry of the
serpentine trace patterns. This adjustment will take place during
the circuit embedding step described in Sec. 6.2.

Identify Appropriate Resistance Values. The objective of the first
step is to optimize rq and ry, - - -, rn. The goal is to maximize the
minimum difference among the time delays. This goal ensures the
time delay difference for each touchpoint is large enough for a mi-
crocontroller to measure. To heuristically achieve this goal, we
perform a grid search utilizing a circuit simulator, specifically,
Lcapy [Hayes 2022]. To make the search space reasonably small,
we consider a case where all resistance values within the freeform
model have the same value, i.e., rp = - -+ = ry = r. We then only
have two parameters, r; and r, to search for a given N (i.e., the
number of touchpoints), vj,, and vy es. We satisfyro =---=ry =r
when adjusting the serpentine trace pattern’s geometry in the sub-
sequent step.

We must first specify the search range and step for each r; and
r. For ri, we set the search range as [200kQ2, 10MQ] and the step
increment as 200kQ by default. These values were chosen in balance
of computational performance and optimization quality. For r, we
first identify the highest resistance each conduit can achieve with
the serpentine trace pattern. Among these values, we select the
lowest value as the upper limit for r. The step increment is set as
50kQ. For each grid cell (e.g., r1 = IMQ and r = 100kQ2), we use a
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circuit simulator to generate N circuits, each of which corresponds
to a case where the pth point is touched (1 < p < N). Among the
N different tyes » values, we select the pair that has the minimum
difference. Each non-white cell in Fig. 8c illustrates this minimum
difference. The optimal result in Fig. 8c is the cell with the largest
r and smallest r; (i.e., r = 2500kQ, r; = 4200kQ2). However, when
r1 is near the boundary of the hard constraint, v, (0) for the Nth
touchpoint is also close to vpyes (€.g., Fig. 8-b2). Cases when upr(0)
is close to vy es are problematic: they can introduce violations
where r may be larger than expected. This violation can be further
exacerbated when 3D printing the conductive traces with poor
precision. To account for general fault tolerance in 3D printers, we
select a pair of r; and r that achieves a close-to-optimal result while
satisfying the condition that v (0) < 0.90yes.

Adjust the Serpentine Trace Patterns. After optimizing r; and r,
we apply these values to the circuit design. r; is the resistance of
an outside resistor connected to a microcontroller, and thus, it can
be easily adjusted by hand. In contrast, r is the resistance value for
each low conductivity conduit, and we can achieve r by adjusting
the serpentine trace patterns. As discussed in Sec. 6.2, the circuit
embedding step aims to generate the longest conductive trace (i.e.,
largest resistance) by filling a serpentine trace pattern with a given
small margin (by default, 1.2mm). We can find the serpentine trace
pattern that achieves rp = --- = r, = r by gradually increasing
both the margin between each ray and the margin between each
layer.

7 FABRICATION AND USE

Multi-Material Printing. After automatically designing the cir-
cuit, the computational pipeline outputs the fabrication data as
four STL files: the original 3D model, the conductive traces, the
touchpoints and wiring connection point(s), and the conduits to
encase the conductive traces. We use all four files for fabrication.
In Appendix B, we discuss in more detail our 3D print settings and
the filaments that we use. See our Github repository! for the STL
files of our freeform interfaces.

Wiring and Calibration. After 3D printing, we connect the
printed object to a microcontroller. The schematic differs whether
the freeform interface uses a single-wire or double-wire connection.
Fig. 2a and Fig. 2d represents the schematic diagram for the double-
wire and single-wire connection, respectively. Lastly, using an ex-
isting signal processing library [Bae et al. 2024], we calibrate the
RC delay corresponding to each touchpoint by manually touching
each touchpoint for five seconds and observing the time required
to reach a microcontroller’s logic threshold voltage. Calibration is
necessary as each individual and external factors (e.g., clothing, tem-
perature) may generate a different capacitance [Grosse-Puppendahl
et al. 2017]. A video demonstration of our sensing technique can
be found in the supplemental video.

8 APPLICATIONS

We demonstrate the applicability of our computational design
pipeline with six freeform interfaces with different geometries.
Besides the Stanford Bunny already mentioned, our other freeform

Uhttps://github.com/d- rep-lab/3dp- singlewire-sensing
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Figure 9: Examples of freeform interfaces with a single-wire connection designed with our computational design pipeline. Each
row shows the 3D printed object, its internal circuit design, and its corresponding RC delay graph. The RC delay graph is made
by touching each touchpoint one after another. The x-axis corresponds to the time elapsed since using the freeform interface.
The y-axis corresponds to the number of program loops that elapsed until reaching the microcontroller’s voltage threshold.
The RC delay graph is colored based on each touchpoint’s unique RC delay (e.g., gray: no touch, orange: first touchpoint).
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interfaces include a MIDI Drumpad, a Hilbert Curve, a Chinese
character (power), a museum artifact (Chinese lion), and a globe.
Fig. 9 shows the 3D printed model, its internal circuit, and its respec-
tive RC delay graph with the single-wire connection. These objects
were chosen to demonstrate our pipeline’s ability to handle various
geometries. The MIDI Drumpad is an example of a basic geometry;
Hilbert Curve illustrates geometric curves; Power demonstrates
working with a limited bounding volume; the Stanford Bunny and
Chinese Lion are examples of freeform interfaces. Except for the
Chinese Character (power) and MIDI Drumpad, the remaining four
models were selected from the Thingil0K dataset repository [Zhou
and Jacobson 2016]. See the supplemental materials to see the STL
files for these freeform interfaces. The freeform interfaces represent
different numbers of touchpoints with the required conduit length
discussed in Fig. 10b.

MIDI Drumpad and Hilbert Curve. We envision our technique
can be used to quickly prototype tangible interfaces that require
many touchpoints. As discussed in Sec. 2, one of the limitations
of directly embedding electronics is that it requires iterations of
post-processing. To illustrate this vision, we provide two examples.
Fig. 9c is a Hilbert curve with touchpoints. The Hilbert curve aims to
show how our technique can enable touchpoints even for complex
geometry. In contrast, Fig. 9b is a MIDI trackpad with a box shape.
The trackpad was modeled in a commercial CAD tool. The trackpad
emphasizes how we can enable various touchpoints (i.e., 16 in this
case). Both examples show how users can quickly create different
tangible prototypes while minimizing the use of electronics and
post-processing.

Chinese Character (Power). Research highlights how tangible
artifacts can increase learning engagement while also presenting
the learning materials in a different manner [Schneider et al. 2010].
For example, Fig. 9d shows how the five touchpoints can be used
to learn the sequential stroke order for the Chinese character for
‘power’. The touchpoints are embossed so a user can trace their
finger along the surface of the character to learn how to write the
character.

Cultural Heritage Artifacts. In most museum settings, visitors
cannot directly touch historical artifacts. In these cases, visitors can
only inspect the historical artifacts from afar. 3D printing technol-
ogy can create replicas of cultural artifacts that visitors can engage
with and provide a more interative way to learn [Neumdiiller et al.
2014]. While visitors may not be able to directly inspect historical
artifacts, the replicas can have different embedded touchpoints that
users can select for further inspection. Fig. 9e shows where a visitor
selects the Chinese lion’s paw for closer details.

Globe. Fig. 9f shows a globe with six touchpoints to help learners
identify the different continents.

9 EVALUATION

The goal of our evaluation is to enable a deeper understanding of
this RC-delay capacitive sensing technique. Thus, our evaluations
focus on the sensing technique rather than the pipeline as a tool.
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The theoretical, experimental, and computational investigation pro-
vides the groundwork for this objective, and are highly recognized
methods for technical HCI work [Hudson and Mankoff 2014].

As a step toward this goal, we evaluate the efficacy of our ap-
proach with five technical evaluations and six applications. We
evaluate the practical constraints of our pipeline, specifically the
number of touchpoints that we can fabricate while ensuring each
touchpoint is distinguishable. We perform a computational perfor-
mance evaluation of the algorithms used in the automatic circuit
design stage. We showcase six freeform interfaces made with our
pipeline. We measured the signal-to-noise ratio of this sensing tech-
nique. We conduct a user study to assess real-time recognition accu-
racy. We conducted a computational experiment and mathematical
analysis to evaluate the robustness of the single-wire connection.

9.1 Fabrication Scalability

To determine the scalability of the capacitive touchpoints we can
fabricate, we evaluate what the minimum length of each conduit
(mm) between two touchpoints should be to distinguish each se-
lected point. Determining the minimum length of each conduit
between two touchpoints can infer the smallest possible volume
of a freeform interface. We do not evaluate the maximum size of a
freeform interface as the maximum size is restricted by the build
volume of a given 3D printer.

Double-Wire Connection. We first consider the double-wire con-
nection condition. Based on Sec. 6.3.1, the time difference required
to reach a microcontroller’s logic threshold voltage when touching
pth and (p + 1)th touchpoint can be written as: ¢y, eg p+1 ~ lthresp =
crp+1 In(0in/ (vin — Vhres))- To analyze tihresp+1 ~ Tthresp> We place
three assumptions that would represent common use:

e ¢ = 100pF, as a representative capacitance for a human body
when selecting a touchpoint [ESD Association 2020].

® vjn = 5V and vy = 2.5V, following the technical specifica-
tions of the Arduino UNO R4.

e 5pus as the minimum value required for fij e p+1 ~ Lthresp
which corresponds to 240 clock cycles of the Arduino UNO
R4’s CPU.

From these conditions, we can derive rp41 >35kQ.

We need to determine the minimum length of a conduit (3D pipe)
that can house conductive traces with over 35kQ. To determine such
length, we introduce the following technical assumptions:

o The use of Snapmaker J1S, a 3D printer with a 0.4 mm nozzle
(standard for consumer FDM 3D printers)

e Using a 0 4mm nozzle, the thickness of the conductive trace
for the xy-plane is set to 0.8mm; the ray and layer margins
are set to 1.2mm (refer to Sec. 6.2).

e Protopasta’s conductive PLA (175mm) as the conductive
filament [ProtoPasta 2023].

We measured the resistance of a conductive trace per length
along the xy-plane and z-direction using Protopasta’s conductive
PLA. The results are 256Q/mm for the xy-plane and 1013Q/mm
for the z-direction (Appendix C). We focus only on the conductive
traces on the xy-plane because our circuit embedding mainly relies
on traces on the xy-plane (Sec. 6.2). Thus, to achieve 35kQ, we
need to print approximately 137mm of a conductive trace along the
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Figure 10: Fabrication scalability evaluation of the single- and
double-wire connections with different numbers of touch-
points. In (b), we assume that a conduit has a fixed diameter
of 5mm (our pipeline’s default) or 10mm.

xy-plane. This length can be achieved by drawing the conductive
trace within a conduit that has a 5mm diameter (our pipeline’s
default value for the conduits) and 9mm length. This result infers
the minimum length of a conduit should be 9mm between each pair
of touchpoints.

Note that different technical assumptions can lead to different
results. One significant but easily changeable assumption is the
minimum value required for t, es pe1 ~ Tthresp (i.e., 5ps). We con-
sider 5us to be a relatively safe value corresponding to over 200
clock cycles for the Arduino UNO 4. The value provides enough of a
buffer to account for errors in the conductive trace’s resistance (e.g.,
due to poor 3D printing precision). However, if a user can confirm
one’s 3D printing errors are small (e.g., high-precision printing),
the minimum required time delay difference can be radically re-
duced (e.g., 1pus). This condition significantly reduces the required
horizontal length of a conductive trace for each conduit (e.g., from
137mm to 27mm).

Single-Wire Connection. To understand the fabrication scalability
for the single-wire connection, we place the same assumptions we
listed for the double-wire connection condition. Similar to Sec. 6.3.2,
we apply the constraint of rp = --- = r, = r and perform a grid
search of r and rq to find the minimum value of r that satisfies
lthresp+1 ~ lthresp = SHS for all p. Unlike the double-wire connec-
tion, the required r for the single-wire connection varies based
on the number of touchpoints. Fig. 10a summarizes the value of
r depending on the different number of touchpoints. Following
the same procedure as the double-wire connection, we derive the
minimum length of a conduit with a 5mm diameter, as shown in
Fig. 10b. The derived minimum length for 20 touchpoints is 40mm.
However, as shown with the dashed lines in Fig. 10b, if we increase
the diameter of the conduit to 10mm diameter, this minimum length
of a conduit can be reduced to 12mm. For the single-wire connec-
tion, we can infer that (1) the required length of a conduit between
two touchpoints is longer than the double-wire connection and (2)
the required length follows a close-to-logarithmic function as we
increase the number of touchpoints. Therefore, the single-wire con-
nection places a stronger constraint to fabricate a small freeform
interface with numerous touchpoints.

9.2 Computational Performance

We conducted a performance evaluation of the algorithms used in
the automatic circuit design stage (Sec. 6). We first analyzed the
time complexity of the algorithms to uncover potential performance
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bottlenecks when dealing with complex or large 3D objects. We
then ran an experimental evaluation on different 3D models shown
in Table 1. The results revealed the automatic circuit design stages
can be completed between 16s and 240s.

Time Complexity. The computationally demanding steps are
the (1) voxelization of the freeform model (Fig. 6b), (2) Dijkstra’s
pathfinding (Fig. 6f), and (3) circuit embedding (Fig. 5b).

Our voxelization uses the implementation provided by
PyVista [Sullivan and Kaszynski 2019], which checks whether each
position of voxel grids is within an object surface. Thus, the vox-
elization has O(TG) where T is the number of triangles construct-
ing a surface and G is the number of grid points. Note that G is
roughly proportional to the number of the resulting voxels, V (ie.,
O(TG) =~ O(TV)). For each pair of touchpoints, Dijkstra’s path-
finding algorithm is performed with the weighted graph of the
trimmed voxel representation (Fig. 6-d). In total, this pathfinding
has O(NV log V) where N is the number of touchpoints. The circuit
embedding finds a line segment for each ray on a conduit using the
space-filling algorithm. With S triangles on a conduit’s surface, the
line segmentation can be performed with O(Slog S). When several
rays are generated to slice a conduit (modeled as a 3D pipe) with
a small margin, the circuit embedding for each conduit has a time
complexity of O(USlogS) where U is the volume of a 3D object.
We apply the serpentine trace pattern only for low conductivity
conduits. In total, the circuit embedding takes O(NUS log S). How-
ever, if we model a conduit’s surface with a fixed small number of
triangles, we can simplify the complexity to O(NU).

In sum, the automatic circuit design involves O(TV) (i.e., vox-
elization), O(NV log V) (i.e., Dijkstra’s), and O(NU) (i.e., circuit
embedding) computations. The results highlight that the critical
parameters for computation are U (volume), T (the number of trian-
gles), V (the number of voxels), and N (the number of touchpoints).

Experimental Evaluation. We used a MacBook Pro with 2.3 GHz
8-Core Intel Core i9 and 64 GB 2,667 MHz DDR4 (no GPU use).
We collected and modeled eight 3D objects as seen in Table 1. For
each object, we ran the automatic circuit design stage five times
and measured the average completion time. The breakdown and
total completion times are shown in Table 1. The miscellaneous
steps shown in Table 1 include the clipping touchpoints, the con-
version from the trimmed voxel to the graph representation, and
the resistance optimization. As expected from the time complexity
analysis, completion time differs based on the number of triangles,
voxels, touchpoints, and model’s volume. However, for the selected
3D models, the automatic circuit design is completed in less than 4
minutes for all objects.

9.3 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is a quality metric that measures sig-
nal strength versus noise influence. This information can infer the
likelihood of a false touch selection. SNR for capacitive sensing
systems measures how robust the signals produced by the sens-
ing technique (i.e., active signal) are compared to disturbances of
background noise (i.e., inactive signal).

We employed a similar approach to past work [Palma et al. 2024],
where we also computed SNR by repeatedly touching objects with
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the index finger. Three objects (Stanford Bunny, Hilbert Curve, and
MIDI Drumpad 16) were chosen based on the different number of
touchpoints and geometry complexity. We touched all touchpoints
for a given object (refer to Fig. 9 to see touchpoint placements). For
each touchpoint, we adhered to a three-part process that lasted 9
seconds. First, we did not touch for 3 seconds. Then we touched the
designed touchpoint for 3 seconds and lastly let go for 3 seconds.
This process was repeated for 3 trials. During this process, we
measured the raw capacitive values from the Arduino Uno R4. From
these raw values, we used Davidson’s proposed formula [Davison
2010] to compute SNR (Eq. 7). yy is the mean value when the
touchpoint is not pressed. pp is the mean value the touchpoint is
pressed. oys is the standard deviation of values when the touchpoint
is not pressed.

_ lpu = ppl
=

Traditionally, py, oy for most capacitive sensing systems (e.g.,
[Palma et al. 2024; Pourjafarian et al. 2019]) represents the inactive
signal (i.e., background noise). These systems cast a binary judg-
ment of whether a touchpoint has been selected or not. However, in
our case, any other touchpoint besides the target touchpoint is also
considered background noise. Our capacitive sensing technique

SNR (7)

Table 1: Computational performance evaluation.

Object Information Completion Time (s)

vol (mm3) triangles voxels # points

\ £
o
QQ@ 302391 259898 444696 5 60 53 12 28
Stanford Bunny
= . 1
78284 2116 50176 4 3 6 5
MIDI Drumpad (4)
W 241964 7336 155232 9 2 7 15 15
MIDI Drumpad (9)
W 458519 10316 320211 16 5 20 149 44
MIDI Drumpad (16)
173667 39936 285897 10 12 1 51 49
Hilbert Curve
y
317412 29472 325651 6 19 23 9 23
Globe
cr=as 613578 69994 384825 6 23 133 23 22
Chinese Lion
132102 2256 295056 5 6 156 59 18

Chinese Character
(Power)

voxelize Dijkstra circuit embed misc total

155

42

223

117

74

201

240

SCF 25, November 20-21, 2025, Cambridge, MA, USA

Table 2: Signal-to-noise ratio for Stanford Bunny, Hilbert
Curve, and MIDI Drumpad (16) under the two wiring condi-
tions: single wire and double wire. n represents the number
of touchpoints.

Object & Wiring Condition Trial 1 Trial2  Trial 3
Stanford Bunny (n = 5)
Double Wire 49.993 55.179 45.654
Single Wire 369.131 323.638 408.109
Hilbert Curve (n = 10)
Double Wire 18.779 17.930 17.921
Single Wire 131.987 132.576 124.476
Drumpad 16 (n = 16)
Double Wire 49.930 44.784 49.263
Single Wire 22.432 22.099 25.876

relies on a categorical judgment of determining which touchpoint
is selected based on the RC Delay. As such, a system can wrongly
judge a touchpoint selection if there is not enough difference in the
RC delays among the touchpoints. Hence, for our SNR calculations,
we computed a pairwise calculation (n X n matrix) between the
target touchpoint (up) and all of the other touchpoints (g7, oy). We
report the minimum SNR value from this pairwise computation to
illustrate the smallest gap between a pair of touchpoints (Table 2).
See the supplemental material for the full pairwise computations.
Davidson notes that the SNR threshold should at a minimum be 7,
but ideally at least 15 for for robust sensing in real-world applica-
tions [Davison 2010]. Our results highlight how all combinations of
the objects and wiring conditions satisfy this threshold, providing
a high-level of reliability.

9.4 Recognition Accuracy

We evaluate two of the freeform interfaces discussed in Sec. 8. We
conducted a controlled study to measure the real-time recognition
accuracy of the freeform interfaces. The single-wire and double-
wire connections are our independent variables. The accuracy of
recognizing touchpoints is our dependent variable. Based on our
discussion in Sec. 6.3 and insights from Sec. 9.1, we expect the single-
wire connection to be more sensitive if a freeform interface has too
many touchpoints (i.e., unable to distinguish between touchpoints).
To validate this hypothesis, we measure our approach’s real-time
recognition accuracy with 8 different objects.

9.4.1 Objects. Eight objects were selected based on the different
number of touchpoints. The objects were generated from four dif-
ferent models: MIDI Drumpad with 4 keys (PAD_4), MIDI Drumpad
with 9 keys (PAD_9), MIDI Drumpad with 16 keys (PAD_16), and a
Hilbert Curve with 10 touchpoints (HILBERT_10). Each model was
printed twice to represent the single-wire and double-wire connec-
tions. Each touchpoint was labeled with a number to indicate its
touchpoint ID.
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We chose the MIDI Drumpads and Hilbert curve to represent
both simple and complex geometry. The MIDI Drumpad’s over-
all geometry as a box is simple enough that it would be easy for
users to recognize and select the touchpoints. The simplicity in
the geometry also lends well to how the same design can be easily
scaled accordingly to generate different numbers of touchpoints.
However, the design of the MIDI Drumpad limits assessing whether
geometric complexity can also affect real-time recognition accuracy.
As a result, we include a Hilbert curve with 10 touchpoints. We
anticipate the Hilbert Curve is one of the most complex geometries
that fits our modeling criteria.

9.4.2  Protocol. We recruited 10 participants for the study. Each
study session was held in the same location to account for environ-
mental factors. The 3D printed object is connected to an Arduino
UNO 4 microcontroller, which is connected to a laptop. The laptop
was powered by a wall outlet (earth ground). Participants were first
given an overview of our capacitive sensing mechanism, and the
experimenter demonstrated the sensing of touchpoints using the
Stanford Bunny as an example.

After the demonstration, participants began the formal study.
We alternated the order of the two conditions (i.e., single-wire and
double-wire connection) per participant. For each object, the par-
ticipants were given verbal instructions for the calibration process
(Sec. 7). They were instructed on the order of the touchpoints (left
to right; row by row). For the MIDI pads, they held onto each touch-
point for 7s to account for fluctuation and noise. For the Hilbert
Curve, participants were given 3s additional seconds to find the
appropriate touchpoint because of the object’s complex geometry.
After calibration, the performance evaluation started. For each ob-
ject, we randomly generated the order of the touchpoint ID the
participants should touch (i.e., target touchpoint). Three trials were
performed for each touchpoint per object.

9.4.3 Data Collection and Analysis. For each object, we collected
the participant’s calibration and performance data with a signal
processing library [Bae et al. 2024]. The performance data is a time
series with ~64 samples per second. Each instance has a times-
tamp, the target touchpoint, and the classified touchpoint. For each
touchpoint, we trim the first 3.5 seconds during our analysis to
account for the transition time between touchpoints or look-up
time to find the target touchpoint. This decision is based on our
pilot study where we observed that a participant generally took
about 2-3 seconds for transitions and look-up time. We added one
additional second to provide a safe margin. Within the remaining
time, we set a 70% threshold to determine the dominant touchpoint
classification. The classification can fluctuate between two or more
different touchpoint IDs if the RC delays are not distinct enough.
If there is no dominant value within those remaining seconds, we
consider the result to be not recognized (i.e., no convergence to a
value).

9.4.4  Findings. Overall, our method yields an average accuracy of
91.42% (SE=1.329) across the 8 freeform interfaces. Fig. 11 shows
that 6 out of 8 freeform interfaces achieve real-time accuracy of 90%
or higher. Most objects in the single-wire connection demonstrated
higher accuracy compared to their double-wire connection.

Bae and Fujiwara et al.

100
80 |
60

40

20 Single
Double

Accuracy (%)

Total PAD.4  PADO  PAD_16 HILBERT 10

Figure 11: Results from the real-time recognition accuracy.
Bar charts show the average accuracy across n = 10 partic-
ipants with a 70% threshold. Error bars represent standard
errors. There is a significant difference between the single-
wire and double-wire connections for PAD 16
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Figure 12: The RC delay graphs from P5’s calibration and
performance data for PAD_16 with the double-wire connec-
tion. Each graph is colored based on the target touchpoint.
The colored horizontal lines highlight the mean RC delays
measured during the calibration stage (yellow: Point 2, pink:
Point 3, blue: Point 4). In (b), we observe that the RC delay of
each target node is shifted upwards. For example, a horizon-
tal line shows how Point 4 (blue) in the performance data
corresponds to Point 3 (pink), resulting in a misrecognition.

Overall mean accuracies are 93.35% (SE=1.223) for the single-wire
connection and 89.49% (SE=2.339) for the double-wire connection.
However, a Wilcoxon signed-rank test did not show a statistically
significant difference between the two conditions’ accuracies (Z =
1.376, p = 0.08445).

The model that had the greatest difference was PAD_16. A
Wilcoxon signed-rank exact test showed there is a significant dif-
ference (p = 0.03723) in the accuracies between the single-wire and
double-wire connections. Only one participant had an accuracy
of less than 80% with PAD_16 in the single-wire connection. In
contrast, five participants had an accuracy of less than 80% with
the double-wire connection.

A reason for the misrecognition errors is due to participants’
RC delays shifting from the calibration stage to the performance
stage. For example, we examined the collected data from P6 who
scored only 33% accuracy for PAD_16 in the double-wire connection.
Fig. 12 shows how P6’s performance data for all touchpoints has
shifted from their calibration stage. Consequently, most of P6’s
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touchpoint selections were misclassified (e.g., Point 4 in Fig. 12a
was misclassified as Point 3 during the performance stage).

9.5 Robustness to Capacitance Shift

The results in Sec. 9.4 indicate that a shift in capacitance, ¢, can
significantly influence the recognition accuracy. Given how we
observed an overall higher accuracy of the single-wire connection
than double-wire, we hypothesize that the single-wire connection
is more robust to a capacitance shift. To validate this hypothesis,
we conduct a computational experiment perturbing the capacitance
and perform a mathematical analysis.

9.5.1 Computational Experiment. Utilizing a circuit simulator,
Lcapy [Hayes 2022], we compare the robustness of the double-
wire’s and single-wire’s connections to a capacitance shift. The
circuit models correspond to the 8 freeform interfaces evaluated in
Sec. 9.4.

We first resembled the calibration stage (Sec. 7) as follows. With
the circuit models, for each touchpoint, p, we derived the time re-
quired to reach a microcontroller’s logic threshold voltage (refer
to Eq. 3 and Eq. 6) by setting ¢ =100pF as a representative capaci-
tance [ESD Association 2020]. We denote the derived time as ., »

To mimic the recognition stage, we perturbed c¢ from 100pF
by randomly sampling ¢ from a Gaussian distribution with y =
100pF and 0. We evaluated different o values ranging from OpF
to 5pF. For each o, we sampled ¢ 100 times, which corresponds
to testing the recognition with 100 participants. For each sam-
pled ¢, we derived the corresponding time required to reach the
threshold voltage, trecps for all touchpoints. Then, for each touch-
point, we judged whether the touch recognition was correct if
argminge (q,... N} ltrecp = calq| = p (note: N is the number of touch-
points). We computed the average accuracy for the 100 sampled ¢
values and N touchpoints for all 8 freeform interfaces.

Fig. 13 summarizes the results: the single-wire connection is
significantly more robust to a capacitance shift than the double-
wire for the 8 freeform interfaces. By comparing Fig. 11 and Fig. 13,
we can deduce that when the participants interacted with PAD_16,
the capacitance shift has an approximate strength of o = 2pF.

9.5.2  Mathematical Analysis. To theoretically validate the hypoth-
esis of the single-wireconnection being more robust, we perform a
mathematical analysis. To correctly recognize a touchpoint, p, we
must satisfy two conditions:

|trecp — tcalpl < |trecp — tca1p+1| (3)
|trecp — tcalpl < |trecp — tcalp—l' )

These conditions avoid misrecognizing a touchpoint, p, with its
two other adjacent touchpoints, p — 1 and p + 1. Note that when
p =1, we only need to satisfy Eq. 8; similarly, when p = N, only
Eq. 9 is required.

9.5.3 Double-wire connection. We let ¢ be the capacitance during
the calibration stage and (¢ + €) be the capacitance during the
recognition stage. The goal is to derive the range of e that satisfies
both Eq. 8 and Eq. 9. By referring to Eq. 3, we can derive the range
of € as:

c Tp ce< ¢ Tp+l

€
2 Tillp 2 Tillp

(10)
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Figure 13: Results from the capacitance perturbation simu-
lation for the freeform interfaces. o represents the strength
of the perturbation (specifically, capacitance values are sam-
pled from a Gaussian distribution with g = 100pF and o).
The single-wire connection is more robust to the capacitance

shift than the double-wire connection.

The upper and lower bounds correspond to satisfying Eq. 8 and
Eq. 9, respectively.

Single-wire connection. We derive the range of ¢ using Eq. 6.
Unlike the double-wire, the single-wire’s logarithmic term depends
on a touchpoint, p. To simplify the math expression, we denote the
logarithmic term in Eq. 6 as L. To satisfy Eq. 8, e must satisfy:

Ttillp+1 Lp+1 .
€<t ( pHilpHl 1), if rinpe1Lp+1 = rinplp > 0

Fiill L

til pr‘t.) L (11)
€> —% (1 - %), otherwise

tillpLp
Similarly, Eq. 9 corresponds to:
c "tillp-1Lp—1 .
€<y (—rtillpr - 1) , if rﬁup_le,l - rﬁupr >0
c Tiillp—1Lp-1 . (12)

€>-3 (1 - W)’ otherwise

When we apply our resistance optimization (Sec. 6.3.2) to find
r1, N (0) is only slightly smaller than vy, (e.g., Fig. 8-b4). In this
case, We can assume fealy1 < lealp < lealp—1- By concurrently
considering this assumption with Eq. 11 and Eq. 12, we can derive:

c Ttillp+1Lp+1 ¢ [rip—1Lp-1
(1 . p_f’) ce<t (p_f’

- -1 (13)
2 TillpLp TtillpLp

Comparison. For the double-wire connection, as indicated by
Eq. 10, we can make the range of € larger (i.e., more robust to the
capacitance change) by increasing rj and rp+1 while keeping ry; ,
as small as possible. Also, since Ttillp (ie., 11+ +rp) increases as
p increases, generally, a larger p is more difficult to achieve with
a wider range of €. Based on these observations, to create a more
robust interface, the resistance values should be designed to have
r1 < --- < ry while ensuring a large difference between the adja-
cent resistance values. For example, we can set rp = arp—1 where
c(al —aP™') c(aP*—aP)

2(aP-1) 2(aP-1)
Ultimately, when a — oo, —¢/2 < € < co. However, in practice, the
minimum resistance (r;) and the maximum resistance (rpr) should
be large and small enough, respectively. These considerations are
due to the limitations of the microcontroller’s measurement of time
delays, conduit volumes, and 3D printing resolutions. For example,
in a practical setting, we can set N = 10 and a = 1.1. This config-
uration setting leads to ry = 2.4r; and the average range of ¢ is

0.28¢ for touchpoints p = {2,---,9} (ie, % ZZ_Z cr‘;::;rp ). Note
- iy

a > 1. In this case, Eq. 10 becomes — <e<




SCF ’25, November 20-21, 2025, Cambridge, MA, USA

that when we do not apply this optimization using a > 1, this range
becomes smaller: e.g., 0.23c when a = 1.

For the single-wire connection, by referring to Eq. 13, we can
infer that increasing the range of € can be achieved by having
relationships rp > - - - > rny while keeping r; as small as possible.
However, as discussed in Sec. 6.3.1, r; must also satisfy r; > (1 —
Uthres/Vin)Ttill v~ To perform a fair comparison with the double-wire,
weset N = 10,rp—1 = 1.1rp for p > 2(i.e., corresponding to a = 1.1),
and r; = 1.01(r2 + - - - rn). Here we assume the use of Arduinno
UNO R4 as a microcontroller, i.e., vj,=5V, and vy,es=2.5V. Note
that r; is resistance of a resistor connected to a microcontroller
and can be easily adjusted and large unlike the other resistance
values. Then, this setting derives 0.33c as the average € range for
touchpoints p = {2,---,9}. When rp_1 = 1 (i.e., a non-optimal
case), this range becomes 0.28c. These results support that the
single-wire connection can create more robust freeform interfaces
than the double-wire for our expected usage.

10 LIMITATIONS AND FUTURE WORK

This work introduces a computational design pipeline that em-
beds multiple capacitive touchpoints into any 3D model that has
a closed mesh without self-intersection. Our method exploits RC
Delay so that all touchpoints within our freeform interface can be
capacitively sensed using only a single-wire or double-wire con-
nection. Our six evaluations enable a thorough understanding of
the RC Delay capacitive sensing technique, highlighting areas of
improvement.

10.1 Supporting Smaller Objects

Our fabrication scalability evaluation demonstrates that our ap-
proach for the double-wire connection could potentially support
embedding a touchpoint for every 9mm distance. The single-wire
connection places stricter constraints on fabricating a freeform in-
terface with a smaller footprint (e.g., requiring over 30mm distance
between each pair of touchpoints). While our approach can gen-
erally support fabricating small objects (e.g., the smallest volume
we fabricated is 78284mm? for four touchpoints), future research
is necessary on fabricating smaller objects (e.g., robotic grippers).

Our current fabrication scalability is largely dictated by the resis-
tivity of the Protopasta conductive filament. Conductive filaments
(including the Protopasta’s) are typically used to connect electronic
components (i.e., the role of wires), and are manufactured to have
low resistivity. In contrast, our approach uses the conductive fila-
ment to create 3D printed resistors, requiring a different need of
electrical properties. In our case, as long as the filament is conduc-
tive, a larger resistivity is generally preferable. A larger resistivity
can help achieve the target resistance with a shorter conductive
trace length. Designing such a filament would make it possible to
fabricate smaller freeform interfaces.

10.2 Supporting More Distinct Signals

Our SNR evaluation highlights the robustness of our technique.
All of the reported values in Table 2 are above the minimum SNR
threshold (> 7) and achieve the standard for real-world applica-
tions (> 15) [Davison 2010]. The single-wire condition for Stanford
Bunny and Hilbert Curve significantly outperforms the double-wire
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condition. Though we see a drop in performance for the PAD_16 for
the single-wire condition, this result also matches our discussion in
Sec. 6.3 and insights from Sec. 9.1. As expected, the single-wire con-
nection becomes more sensitive to noise if a freeform interface has
too many touchpoints. This limitation is enforced by the resistance
optimization discussed in Sec. 6.3.2. One possible improvement
could be relaxing the resistance value constraint we made for the
efficient optimization (i.e., ry = - - - = rn). Optimizing each individ-
ual resistance value would create more distinct signals. However,
we expect this approach would be subject to a much higher com-
putational cost. Similar to fabricating smaller objects, addressing
this challenge requires producing higher resistance within a small
volume. This could be achieved through the use of conductive fil-
aments that have higher resistivity and shorter conductive trace
lengths.

10.3 Supporting Real-Time Calibration
Adjustment

Though the SNR results highlight the robustness of our technique
to background noise, our user study highlights a limitation of our
pipeline. Currently, touchpoint selection is fully dependent on the
calibration data. During the time gap between the calibration stage
and touchpoint selection, if a change is introduced (e.g., a change
in participant’s capacitance or microcontroller performance), this
dependency without real-time adjustment can introduce significant
recognition errors.

The double-wire connection is more susceptible to errors due
to this dependency. In Sec. 6.3.1, we originally hypothesized that
the double-wire would perform better given how we can generate
numerous unique RC delays. In contrast, generating unique RC
delays with the single-wire connection is more restricted. However,
our user study with PAD_16 highlighted the trade-offs of the double-
wire connection in real-world conditions. As discussed in Sec. 9.5,
our computational experiment and mathematical analysis validate
that if a change occurred after calibration, then the double-wire
connection has a more critical effect. This calibration shift did
not occur in the SNR tests given its short time duration (9 sec).
Thus, enabling more robust sensing will require future research
on improving calibration, such as including a real-time adaptive
baseline for adjustment.

We imagine such solutions can include internally routing an
additional wire that can gather baseline capacitance readings. An-
other solution is to use swept-frequency capacitive sensing [Sato
et al. 2012] with our technique. This combination can sweep dif-
ferent frequencies over a time window to sense whether the user
configuration has changed. Regardless, future solutions would re-
quire the system to automatically detect the user’s capacitance and
re-calibrate by referring to Eq. 3 or Eq. 6.

10.4 Supporting Multi-touch

Our approach demonstrated overall 91.42% recognition accuracy
(SE=1.329) for various objects across 10 participants. However, this
technique is currently limited to one touch selection at a time.
Future work should examine how to extend this technique to multi-
touch. This will require modifying the algorithms in the automatic
circuit design to account for multiple simultaneous touches. Given
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that RC delay values can be optimized with our approach, it is
possible to design the traces such that the sum of each combination
of RC delay values can also be a unique value. This approach is
similar to creating a resistor ladder [Chris 2018] in which different
combinations of resistors are used to uniquely identify multiple
switches in a single circuit. Another interesting research direction
would be to leverage machine learning to predict simultaneously
activated touchpoints based on changes in the RC delay signal.

11 CONCLUSION

We introduce a computational design pipeline that embeds mul-
tiple capacitive touchpoints into any 3D model that has a closed
mesh without self-intersection. The core of our approach is op-
timizing a phenomenon called RC Delay so that all touchpoints
within our freeform interface can be capacitively sensed using
only a single-wire or double-wire connection. By leveraging multi-
material printing, we achieve our research goal of streamlining
fabricating interactive 3D printed objects with complex geome-
try with minimal instrumentation. The strengths of our pipeline
(scalability, computational performance, robustness, accuracy, and
applicability) work towards 3D printing objects that are fully inter-
active and ready for use straight off the printer as final products in
real-world contexts.
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A EQUATION DERIVATION WITH SYMBOLIC
PROGRAMMING

We derived Eq. 1 and Eq. 4 by utilizing Lcapy [Hayes 2022], a Python
library that can perform symbolic circuit analysis. Symbolic circuit
analysis can derive equations from given circuits and mathematical
symbols (in our case, vjpn, ¢, £, 71, , T'nt1)

B IMPLEMENTATION

B.1 Software Implementation

The user interface to select the touchpoints in Fig. 4 is a web ap-
plication made using three.js [three. js authors 2023] and the three-
mesh-bvh [Johnson 2023] libraries. We implemented the algorithms
used in the automatic circuit design stage (Sec. 6) with Python 3 and
libraries for matrix computations and machine learning methods
such as NumPy/SciPy [Virtanen et al. 2020] and scikit-learn [Pe-
dregosa et al. 2011]. We used graph-tool [Peixoto 2014] to use
algorithms such as Dijkstra’s and A* for path finding. We used
PyVista [Sullivan and Kaszynski 2019] (a Python API for Visual-
ization Toolkit [Schroeder et al. 2006]) for 3D graphics-related op-
erations such as clipping, voxelization, and ray tracing. For the
resistance optimization for the single-wire condition, we used
Lcapy [Hayes 2022] and SymPy [Meurer et al. 2017] for the cir-
cuit simulation and symbolic computation and Pathos for multi-
processing. For the calibration, we utilized the sensing-network
library [Bae et al. 2024].

Table 3: Resistance values of conductive traces. Three sam-
ples (S1-S3) for each measurement. For the thickness of
the conductive trace, we followed our computational design
pipeline default (i.e., horizontal: 0.8mm, vertical: 1.2mm).

Conductive Trace S1(Q) S2(Q) S3(Q) Avg(Q)
Length (mm)
Horizontal
40 10600 10630 10600 10610
80 23330 23630 23110 23357
120 33290 33020 32470 32927
160 40200 43070 41600 41623
Vertical
10 10730 12500 10970 11400
20 26070 22670 24080 24274
30 37700 38830 28540 35023
40 43830 42600 38330 41587

B.2 3D Printing Hardware and Materials

To fabricate freeform interfaces with embedded multi-points within
one pass, we rely on a multi-material FDM 3D printer using non-
conductive and conductive filaments. We use a Snapmaker J1S
3D printer, which supports dual-nozzle printing. Both nozzles are
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Figure 14: Two linear regression models for (a) horizontal traces and (b) vertical traces.

0.4 mm standard soft brass. We set our print speed to 60 mm/s for
both conductive and non-conductive filaments. The layer height of
all prints is 0.24 mm.

Our conductive filament is Protopasta’s conductive PLA (1.75
mm) [ProtoPasta 2023]. This filament is commonly available and
provides a good balance of conductivity and resistivity to design a
sensing network. The non-conductive filament can be any standard
PLA filament. The print and build plate temperatures for both
filaments used were based on vendor recommendations.

The infill percentage differs for the four files discussed in Sec. 7.

The original body uses an infill of 20% using the gyroid pattern. In
some of our preliminary tests, we found that not having enough
infill (e.g., 0%) can cause parasitic capacitance [Riba et al. 2019]
where the coupled charge dissipates due to the air inside the model’s
body. As such, we recommend choosing a range between 5-20%
infill to provide steady sensor readouts. The other STL files all have
an infill percentage of 100% using the rectilinear pattern.

B.3 Sensing System

For our microcontroller, we tested using the Arduino Uno R4 WiFi
(48MHz CPU), which has a 5V power source and a 2.5V logic thresh-
old. To constantly measure the time delays, we utilized digital sig-
nals from the microcontroller’s digital I/O pins.

C MEASUREMENT OF CONDUCTIVE TRACE’S
RESISTANCE

We conducted an empirical investigation to understand the re-
sistivity properties of the conductive filament. We measured the
conductive traces horizontally and vertically as our 3D printed con-
ductive traces are drawn in a serpentine trace pattern. We produced
three samples of each measurement, and we used Fluke 115 Digital
Multimeteter to measure each object’s resistance (Table 3). See the
supplemental materials to see the STL files.

In Fig. 14, we used the average values in (Table 3) to plot the rela-
tionship between the conductive trace’s length and measured resis-
tance. The two linear regression models informed how to generate
the conductive traces during the circuit embedding step (Sec. 6.2).
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